Wright Lab All Hands Meeting
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m to hear about and discuss what is going on at the lab.
Unlike phase diagrams in condensed matter that can be probed in the laboratory, the Quantum Chromodynamics (QCD) phase diagram can only be mapped out through both experiments and astrophysical phenomena. At low baryon densities and high temperatures it is explored both through the big bang and the little bangs produced in heavy-ion collisions. At large baryon densities, either low-energy heavy-ion experiments or neutron star mergers can be used to map out its potential phases.
Detection of ultra-high-energy (UHE) neutrinos is the key to understanding the most energetic processes in the universe, namely, the sources of UHE cosmic rays which have been detected at earth with energies exceeding 1 Joule per nucleon. As UHE cosmic messengers, neutrinos are unparalleled for their ability to travel from source to Earth. Unfortunately, however, they are very difficult to detect, owing to their low flux and small interaction cross section.
The XENON Dark Matter Project uses xenon dual-phase time projection chambers for direct Dark Matter detection. With steadily growing target masses the XENON detectors set world-leading limits on WIMP-nucleon interactions over a broad mass range – most recently with XENON1T. Its unprecedentedly low backgrounds coupled with the tonne-year exposure also enabled searches for rare nuclear processes, the coherent elastic scattering of solar neutrinos and alternative Dark Matter candidates.
Introduction to Scientific Computing at Wright Lab, led by Thomas Langford, will cover:
In-house computing resources
YCRC HPC systems: how-to and why-to
Examples of common work-flows at Wright Lab
Support available at Wright Lab and YCRC
Register here: https://tinyurl.com/wlab-intro-computing
In-person attendance will be capped at 20 people on a first-come, first-served basis, according to the current Yale policies.
At sufficiently high temperatures, QCD matter becomes a hot and dense deconfined medium known as the quark-gluon plasma (QGP). The QGP medium can be experimentally recreated through the collisions of relativistic heavy-ions at facilities such as the Large Hadron Collider (LHC). The QGP can be studied with hard probes, which study the result of interactions of hard scattered partons with the QGP. These hard scattered partons fragment and hadronize to form a spray of particles called a jet.