Staff

Wright Lab All Hands Meeting: Welcome, Summer Programs Recap, and Next Generation Network at Wright Lab

The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m. in WL-216 to hear about and discuss what is going on at the lab.

This week we will welcome new lab members, hear a brief recap of Wright Lab’s summer programs, and hear about the Next Generation Network migration at Wright Lab.

Wright Lab Resources Presentation

We invite members of our community, in particular new members, to an overview presentation about Wright Lab resources. The program includes introductions of Wright Lab technical and administrative staff, an overview of program activities for the Fall, a safety briefing for the community, and brief presentations about the facility’s resources.

Fall 2023 EHS Orientation for Wright Lab Research Shop Users

Wright Lab will host two, identical 1-hour Environmental Health and Safety (EHS) Shop Orientations on Thursday, September 7 at 1 p.m. and Tuesday, September 12 at 2:30 p.m. The EHS shop orientation is offered each semester and is required to be taken once by anyone who would like to gain access and make use of the research and teaching shops at Wright Lab.

For more information on the shop facilities at Wright Lab see:
https://wlab.yale.edu/facilities

Fall 2023 EHS Orientation for Wright Lab Research Shop Users

Wright Lab will host two, identical 1-hour Environmental Health and Safety (EHS) Shop Orientations on Thursday, September 7 at 1 p.m. and Tuesday, September 12 at 2:30 p.m. The EHS shop orientation is offered each semester and is required to be taken once by anyone who would like to gain access and make use of the research and teaching shops at Wright Lab.

For more information on the shop facilities at Wright Lab see:
https://wlab.yale.edu/facilities

NPA Seminar: Carlos Peña Garay, Laboratorio Subterraneo de Canfranc, "Science in an Underground Lab"

Nuclear, particle and astrophysics are the themes of experiments hosted in underground labs. I will discuss, after motivated by fundamental questions, recent work done in Canfranc. Most of my talk will be concentrated on the exploration of neutrinos’ fundamental properties in nuclear and particle physics, astrophysics and cosmology, but I will also discuss current work on dark matter searches. Our cells are ionized by cosmic muons and radioactivity and I will briefly close with research on life processes in cosmic silence.

Astronomy/Physics Combined Seminar: Meg Urry, Yale University, "New Views on the Distant Universe"

The James Webb Space Telescope launched on Christmas Day 2021. After traveling far from Earth and undergoing months of activation and checkout, JWST began in July 2022 to return stunning images and spectra of stars and galaxies, from within our own Milky Way galaxy to the most distant visible universe. We have discovered some of the first galaxies ever formed and we can see deep into stellar nurseries in our own galaxy. And much more! I will describe and explain the latest, greatest results from JWST for a non-specialist audience.

NPA Seminar: Jonghee Yoo, Seoul National University, "Searching for invisible axion dark matter with an 18T magnet haloscope"

Astrophysical observation indicates that 68% of the Universe is made up of dark energy, 27% is dark matter, and the rest 5% is ordinary matter. Therefore, probing the dark components of the Universe is the most prominent subject in modern particle physics. One of the strong candidates of dark matter is the hypothetical particle called axions. The axion has been postulated to solve the strong-CP problem in quantum chromodynamics. The axion is also an ideal dark matter candidate who would have been produced during the Big Bang.

NPA Seminar: Karl van Bibber, UC Berkeley, "ALPHA – A Search for the Post-Inflation Axion"

The axion represents both the most natural solution to the Strong-CP problem and a compelling candidate to constitute the dark matter of the Universe. The most sensitive experiments searching for axion dark matter are based on the resonant conversion of axions to photons within a microwave cavity permeated by a magnetic field.

Dissertation Defense: Sumita Ghosh, Yale University, "Harnessing HAYSTAC for Hidden Photons and Advancing Rydberg Atom-based Axion Detection"

Dark matter is the name that we give to the 85% of matter in the universe that interacts via gravity but negligibly with any of the other known forces. One compelling model for dark matter is the axion, as it simultaneously solves the existence of dark matter and the strong CP problem in QCD. Axions can interact with a strong magnetic field through the Primakoff effect, wherein the axion can spontaneously convert into a photon in the presence of a strong magnetic field.

Subscribe to RSS - Staff