Staff

NPA Seminar: Andrew Mastbaum, Rutgers University, “Xenon-doped liquid argon TPCs as a neutrinoless double beta decay platform”

Searches for neutrinoless double-beta decay (NLDBD) continue to expand our understanding of the lepton sector, with several promising experimental paths toward increased sensitivity. We have considered the possible reach of a large-scale deep-underground LArTPC experiment doped with NLDBD candidate isotope xenon, and the challenges this approach would entail. In this talk, we will review the essential design requirements, background mitigations, and several open R&D questions relevant to such a detector, and discuss the potential sensitivity.

Introduction to Yale Spinup and Cloud Computing Workshop

Led by Vincent Balbarin, Research Computing Specialist, Wright Lab & YCRC
Public cloud platforms such as AWS, Microsoft Azure, and Google Cloud offer variety, flexibility, scalability, availability and resilience without the need for self-hosted data centers.
Yale Spinup Self-Service provides access to commonly used services hosted in Amazon Web Services and is an ideal environment to learn cloud computing concepts and approaches.

NPA Seminar: Monica Nunes, Fermilab, “Construction of SBND: Short Baseline Near Detector at Fermilab”

The Short-Baseline Near Detector (SBND) will be one of three Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is currently in the construction phase and is anticipated to begin operation in 2023. SBND is characterized by superb imaging capabilities and will record over a million neutrino interactions per year. I will present the steps of the construction of this new detector and the preparation for operation.

NPA Seminar: Veronica Dexheimer, Kent State University, “Probing exotic matter in neutron stars”

The high densities achieved in neutron stars and the high densities and temperatures achieved in neutron-star mergers create ideal testing grounds in which to learn about exotic matter, namely hyperons and deconfined quarks. The presence of exotic matter can strongly affect the interior of neutron stars, but cannot be directly observed. New electromagnetic and gravitational-wave constraints have been slowly constraining the dense QCD equation of state, allowing us to learn important information about the strong interaction.

EHS Orientation for Wright Lab Shop Users - Fall 2022

Wright Lab will host 1-hour Environmental Health and Safety (EHS) Shop Orientations. The EHS shop orientation is offered each semester and is required to be taken once by anyone who would like to gain access and make use of the research and teaching shops at Wright Lab.
For more information on the shop facilities at Wright Lab see: https://wlab.yale.edu/facilities
Register here: https://forms.gle/MzVDERoSrtmwp8579

EHS Orientation for Wright Lab Shop Users - Fall 2022

Wright Lab will host 1-hour Environmental Health and Safety (EHS) Shop Orientations. The EHS shop orientation is offered each semester and is required to be taken once by anyone who would like to gain access and make use of the research and teaching shops at Wright Lab.
For more information on the shop facilities at Wright Lab see: https://wlab.yale.edu/facilities
Register here: https://forms.gle/MzVDERoSrtmwp8579

EHS Orientation for Wright Lab Shop Users - Fall 2022

Wright Lab will host 1-hour Environmental Health and Safety (EHS) Shop Orientations. The EHS shop orientation is offered each semester and is required to be taken once by anyone who would like to gain access and make use of the research and teaching shops at Wright Lab.
For more information on the shop facilities at Wright Lab see: https://wlab.yale.edu/facilities
Register here: https://forms.gle/MzVDERoSrtmwp8579

WIDG Seminar: Zoltan Varga, Wigner Research Centre for Physics, "Investigating the role of the underlying event in the charm-baryon enhancement”

The factorization hypothesis states that the production cross-section of heavy-flavor hadrons can be calculated as the convolution of three independent terms: the parton distribution function of the colliding hadrons, the production cross sections of the heavy-quarks in the hard partonic process, and finally the fragmentation functions of the heavy-flavor quarks into the given heavy-flavor hadron species. The fragmentation function has been traditionally treated as universal, i.e. independent of the collision systems.

WIDG Seminar: Benjamin Siegel, Yale, “Searching for Dark Matter via a Levitated Microsphere Array”

Optically levitated masses have many applications in precision measurement, including tests of the neutrality of matter, millicharged particle searches, and dark matter detection. For such searches in which sensitivities scale with the mass or number of neutrons in the test particle, using larger, heavier spheres extends their reach. To capitalize upon this, we have used spheres with diameters on the micrometer scale in past experiments. Further improvements in sensitivity to rare events and rejection of correlated noise sources can be achieved using an array of levitated microspheres.

NPA Seminar: Jamie Karthein, MIT, “Fluctuations of Conserved Charges for QCD Phase Diagram Characterization”

Fluctuations provide a powerful tool for elucidating the nature of strongly-interacting matter in the QCD phase diagram. In heavy-ion-collision systems, the net-particle number fluctuations are captured at the moment of chemical freeze-out. Studies of the chemical freeze-out via susceptibilities from Lattice QCD and the Hadron Resonance Gas model contribute to the characterization of the transition region of the QCD phase diagram.

Subscribe to RSS - Staff