Alumni

NPA Seminar, Flavio Cavanna, FERMILAB and University of L’Aquila, "The path of the DUNE Experiment at a turning point."

Getting there! DUNE with two 17kt LAr TPC Far Detector (FD1-FD2) modules, a Near Detector Complex and a Neutrino Beam with an intensity of 1.2 MW is well on its way to start physics in 2028 at SURF (SD). Mass Ordering and sensitivity to Maximal CPV - the initial goals of the flagship Long-Baseline (LBL) Neutrino Program - are within reach. 
The time has come to define a strategy to achieve the ambitious ultimate precision in the LBL physics goals and possibly further expand the DUNE science scope into the low-energy domain of rare underground physics and BSM searches.

Dissertation Defense: London Cooper-Troendle, Yale University, "First Measurement of Inclusive Muon Neutrino Charged Current Triple Differential Cross Section on Argon"

The field of accelerator neutrino experiments is entering an era of precision oscillation measurements where the remaining unknown neutrino measurements will be determined. The upcoming DUNE and Hyper-K experiments aim to determine the neutrino mass hierarchy and degree of Charge-Parity (CP) violation in the neutrino sector, providing potential insight on the matter-antimatter imbalance observed in the universe. However, these experiments require highly accurate measurements, and neutrino cross section modeling uncertainties may limit their capabilities.

Dissertation Defense: Kaicheng Li, Yale University, "Searching for the Electron Neutrino Anomaly with the MicroBooNE Experiment Using Wire-Cell Reconstruction"

The Micro Booster Neutrino Experiment (MicroBooNE) is a leading large-scale Liquid Argon Time Projection Chamber (LArTPC) experiment, designed for precision neutrino physics. The main scientific objectives of MicroBooNE include the investigation of the Low Energy Excess (LEE) observed by the MiniBooNE Experiment between 2002-2019 in the Booster Neutrino Beam (BNB) at Fermilab, the measurements of neutrino-argon interactions, and the research and development of LArTPC technology. This thesis focuses on understanding the MiniBooNE LEE through charged-current electron neutrino interactions.

WIDG Seminar: Zoltan Varga, Wigner Research Centre for Physics, "Investigating the role of the underlying event in the charm-baryon enhancement”

The factorization hypothesis states that the production cross-section of heavy-flavor hadrons can be calculated as the convolution of three independent terms: the parton distribution function of the colliding hadrons, the production cross sections of the heavy-quarks in the hard partonic process, and finally the fragmentation functions of the heavy-flavor quarks into the given heavy-flavor hadron species. The fragmentation function has been traditionally treated as universal, i.e. independent of the collision systems.

NPA Seminar: Maximiliano Silva-Feaver, University of California, San Diego and The Center for Computational Astrophysics at the Flatiron Institute, “Microwave SQUID Multiplexer Development for the Simons Observatory”

The Simons Observatory is a next generation cosmic microwave background (CMB) observatory sited at Cerro Toco in the Atacama Desert in Chile, scheduled to begin site commissioning in early 2023. It consists of three low angular resolution telescopes dedicated to measuring the degree scale B-mode signal generated from gravitational waves during inflation and one high angular resolution telescope focused on measuring secondary arcminute scale effects.

Dissertation Defense: Ako Jamil, Yale University, “Rare Event Searches in Liquid Xenon with EXO-200 and nEXO”

Noble liquid time projection chambers are ubiquitously used to search for rare events such
as neutrinoless double beta decay or dark matter interactions. A detailed understanding of
light and charge transport in liquid xenon is of the utmost importance when modeling the
performance of these experiments.
In this talk I will present the design and physics reach of the proposed nEXO experiment,

Subscribe to RSS - Alumni