Ages 18

Dissertation Defense: Tong Liu, Yale University, "Inclusive Hadron Yield Analysis in Small and Mid-sized Collision Systems at sqrt(s_NN)=200 GeV at STAR"

At extremely high temperature and energy density, the quarks and gluons form a novel state of matter called the Quark-Gluon Plasma (QGP). The QGP has been widely studied via relativistic heavy ion collisions in large collision systems like Au+Au and Pb+Pb. However, whether the QGP exists in small systems like p+Au, and the dependence of QGP production on the collision system size are still open questions. One way to study the QGP properties is by using proxies of high energy partons, which are created in the initial stages of the collisions, and fragment into hadrons in the final state.

NPA Seminar: Carlos Peña Garay, Laboratorio Subterraneo de Canfranc, "Science in an Underground Lab"

Nuclear, particle and astrophysics are the themes of experiments hosted in underground labs. I will discuss, after motivated by fundamental questions, recent work done in Canfranc. Most of my talk will be concentrated on the exploration of neutrinos’ fundamental properties in nuclear and particle physics, astrophysics and cosmology, but I will also discuss current work on dark matter searches. Our cells are ionized by cosmic muons and radioactivity and I will briefly close with research on life processes in cosmic silence.

NPA Zoom Seminar, Magdalena Djordjevic, Institute of Physics Belgrade, "Exploring QGP properties of through rare high-pt light and heavy flavor probes"

High-pt theory and data are traditionally used to explore high-pt parton interactions with QGP, while QGP bulk properties are explored through low-pt data and corresponding models. However, with a proper description of high-pt parton-medium interactions, rare high-pt light and heavy flavor can also be a powerful tool for inferring bulk QGP properties, as they are sensitive to global QGP parameters.

Subscribe to RSS - Ages 18