Wright Lab All Hands Meeting, Govinda Adhikari and James Wilhelmi, Yale, "DUNE Assembly at Wright Lab"
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m. in WL-216 to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m. in WL-216 to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m. in WL-216 to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m. in WL-216 to hear about and discuss what is going on at the lab.
The Wright Lab community is invited to a weekly meeting on Mondays at 9:30 a.m. in WL-216 to hear about and discuss what is going on at the lab.
In heavy-ion collisions, the fragmentation pattern of a high-energy jet is modified by its interactions with the quark-gluon plasma (QGP). Jet substructure observables, i.e. observables build out of the jet constituents, are thus expected to be sensitive to properties of the medium such as its temperature, length or transport coefficients. So far, experimental measurements at RHIC and the LHC have revealed a narrowing of the jet core with respect to proton-proton collisions.
High energy (> TeV) neutrinos are unique messengers to the distant, high-energy universe. As chargeless and weakly interacting particles, neutrinos arrive undeflected and unattenuated from cosmic distances, giving us key insights to the properties of astrophysical accelerators at the highest redshifts. In this talk, I will discuss the ongoing work of the IceCube Neutrino Observatory to detect and study extraterrestrial neutrinos across a broad range in energies, from TeV to EeV.
Neutrinos decoupled in the early moments of the Big Bang are believed to be the second most abundant particle in the Universe. PTOLEMY is an experiment for detecting relic neutrinos captured on tritium targets. The challenges of ultra-cold neutrino detection have led to new advances in material technologies, RF detection, TES micro-calorimetry, and a transverse drift electromagnetic spectrometer. In this talk, I will present the current status and prospects of PTOLEMY.
The gluon distribution function grows with lower and lower momentum fraction x very fast. As the total scattering cross section is bound by quantum mechanics, the raise of the gluon density has to be tamed, which is explained by gluon recombination under the color glass condensate (CGC) framework. A definitive discovery of nonlinear effects in QCD and as such the saturation regime would significantly improve our understanding of the nucleon structure and of nuclear interactions at high energy.
The neutrino mass scale plays a crucial role in both particle physics and cosmology, yet this scale is unknown. The neutrino masses distort the tritium beta-decay spectrum due to energy conservation. By measuring the tritium spectrum, KATRIN has placed the most precise model-independent limit on the neutrino mass scale, to date (mβ<0.8 eV). Cyclotron Radiation Emission Spectroscopy (CRES), a technique pioneered by Project 8, has the potential to advance beyond KATRIN’s design sensitivity.
sPHENIX is a new Relativistic Heavy Ion Collider (RHIC) detector under construction at Brookhaven National Laboratory required to complete RHIC’s scientific mission of probing the inner workings of Quark-Gluon Plasma. For that reason, sPHENIX will make precision measurements of jets, heavy flavor, and upsilon production. These measurements are possible due to the large hermetic acceptance, huge data rate, hadronic calorimetry, precision tracking of the sPHENIX detector.
This talk will discuss sPHENIX readiness for operations, its physics program, and construction status.