Graduate And Professional

WIDG Seminar: Benjamin Siegel, Yale, “Searching for Dark Matter via a Levitated Microsphere Array”

Optically levitated masses have many applications in precision measurement, including tests of the neutrality of matter, millicharged particle searches, and dark matter detection. For such searches in which sensitivities scale with the mass or number of neutrons in the test particle, using larger, heavier spheres extends their reach. To capitalize upon this, we have used spheres with diameters on the micrometer scale in past experiments. Further improvements in sensitivity to rare events and rejection of correlated noise sources can be achieved using an array of levitated microspheres.

NPA Seminar: Jamie Karthein, MIT, “Fluctuations of Conserved Charges for QCD Phase Diagram Characterization”

Fluctuations provide a powerful tool for elucidating the nature of strongly-interacting matter in the QCD phase diagram. In heavy-ion-collision systems, the net-particle number fluctuations are captured at the moment of chemical freeze-out. Studies of the chemical freeze-out via susceptibilities from Lattice QCD and the Hadron Resonance Gas model contribute to the characterization of the transition region of the QCD phase diagram.

NPA Seminar: Dennis Perepelitsa, University of Colorado Boulder, “The Long Range Plan for Nuclear Science: A Perspective on Hot QCD Priorities”

Abstract: The U.S. nuclear physics community is at the beginning of its Long Range Plan for Nuclear Science process, taking place every 6-8 years. The goal of the planning process is to identify the priorities for the field going forward, including its scientific direction and investments in major detectors or facilities.

WIDG Seminar: Samantha Pagan, Yale, “A Search for Solar Axions with CUORE”

Abstract: The Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment searching for neutrinoless double-beta in Te-130. An observation of this ultra-rare decay would determine that neutrinos are Majorana particles. As an extremely low background experiment with high energy resolution and exposure, CUORE is sensitive to other rare-event searches such as for solar axions and Axion Like Particles (ALPs). Axions are a well-motivated dark matter candidate that could also provide a solution for the QCD Strong CP problem.

NPA Seminar: Paolo Parotto, Penn State, “Finite density equation of state from lattice QCD: recent results from an alternative expansion”

Exploring the Quantum Chromodynamics (QCD) phase diagram has been the goal of extraordinary research efforts from theory and experiment alike. Knowledge of the QCD equation of state at finite temperature and density is crucial to support simulations of heavy-ion collisions. Although lattice simulations are the main tool of investigation for QCD thermodynamics, the determination of the equation of state of QCD at finite chemical potential from direct simulations is hindered by the fermion sign problem.

Subscribe to RSS - Graduate And Professional