Faculty

“Let’s stick together: Sustaining the scientific record and scientific community during chaos” with Holden Thorp

Speaker: Professor Holden Thorp, Editor-in-Chief of the Science Family of Journals and a Professor of Chemistry and Medicine at George Washington University.

Host: Asian Faculty Association at Yale.
Co-sponsors: Association of Chinese Students and Scholars at Yale, Kimball Smith Series.

Reception following presentation. No registration is required for the lecture.

Kimball Smith Series: "The Rise of Malignant Deterrence" with Richard Rhodes

Register below for a lecture by Richard Rhodes, historian and Pulitzer Prize-winning author of “The Making of the Atomic Bomb.” Light dinner will be provided. Yale community members of all disciplines and levels of expertise are encouraged to attend.

Co-sponsors: Physics Department, History Department.
Partners: Wright Laboratory, Political Science Department.
_________________________________

Abstract

NPA Seminar: Lawrence Lee, The University of Tennessee, Knoxville, "What To Do When Nature is Unnatural"

Particle physics is now in an era where discovery will require thoughtful exploration, looking for highly motivated signatures that have, for one reason or another, failed our experimental searching. Beyond the notable discovery of the Higgs Boson, the LHC otherwise has not rewritten textbooks, despite all indications that there are new phenomena to be discovered. This talk will discuss some of those motivations and a few promising research thrusts that should lead to some answers to the Standard Model’s mysteries.

NPA Seminar: Ryan Plestid, Caltech, "Effective field theory for QED corrections to beta decay"

Precision beta decay experiments require high order QED corrections including the (very large) effects of the nuclear Coulomb field. In this talk I will present new work that explains how to construct a low-energy effective field theory for long-distance QED effects in beta decay. I will explain how:

WIDG Seminar: Tyler Johnson, Duke, "The COHERENT Neutrino Program and the First Search for Neutrino-Induced Nuclear Fission"

Over 50 years ago, it was predicted that it is possible to split an atom with a neutrino interaction, but there has never been a concerted experimental effort to confirm this phenomenon. The existence of this process would inform nuclear astrophysics, nuclear reactor monitoring and give a vantage into a process that bridges both the weak and strong fundamental interactions. This would add the neutrino to the selective group of particles confirmed to induce nuclear fission.

NPA Seminar: Gavin Morley, Warwick University, "Levitating microdiamonds towards creating a macroscopic superposition"

We magnetically levitate microdiamonds in vacuum, and the microdiamonds we have made contain single nitrogen-vacancy centres with the longest spin coherence times. We aim to use this setup to put a microdiamond into a macroscopic quantum superposition of being in two places at once. But what is the gravitational effect of a mass in such a superposition? Sougato Bose has proposed a way to probe this question experimentally: if gravity is quantum then it could entangle two microdiamonds that are each in spatial superpositions.

CANCELLED-NPA Seminar: Gabriele D'Amen, Brookhaven National Laboratory, "A story in four dimensions - The future of 4D detectors in High Energy Physics"

Our knowledge of the fundamental interactions governing the universe relies on our ability to accurately investigate the behavior of elementary particles. Whether they are electrons, photons or else, all particles walk their path in both time and space simultaneously, leaving behind a unique signature. In this seminar, I will review the most advanced methods to detect these spatio-temporal signatures using an old ally: the silicon crystal.

Host: Arianna Garcia Caffaro

NPA Seminar: Seb Jones, UCL, "The QTNM collaboration: a project for absolute neutrino mass measurement"

The observation of neutrino oscillations provides proof of non-zero neutrino masses, something which was not predicted in the minimal Standard Model. However, these same neutrino oscillation experiments do not provide information on the absolute scale of the neutrino masses, which remain unknown. The neutrino masses are most directly accessed through those experiments which measure the shape of the beta-decay energy spectrum.

Subscribe to RSS - Faculty