“Using measurements to sculpt quantum entanglement and create non-Abelian topological order on a quantum device”
Traditionally, measurements have been synonymous with extracting information from physical systems. Yet, in quantum systems measurement can actively modify and steer quantum states, acting as a quantum chisel to sculpt new patterns of entanglement. I will describe how this power of measurements can be leveraged to efficiently create the long sought after non-Abelian topological phases. Surprisingly, the particular non-Abelian states created in this way are closely related to Galois’ characterization of solvable polynomial equations.
Finally, I will describe our recent collaboration with Quantinuum that utilizes this approach. In particular, I will discuss the Borromean braiding of excitations, a signature unique to non-Abelian topological order, and its measurement on the Quantinuum platform.
Host: Steven Girvin