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RHIC serves the perfect fluid



Heavy Ion Collisions are very complicated (time-

dependent, strongly correlated quantum many body

physics), but at RHIC & LHC a very simple theory

appears to work.

παντα ρει (everything flows)

Heraclitus of Ephesus, 535 - 475 BC

In this talk I will try to address the questions “Why?”

and “How general is this phenomenon?”.



Hydrodynamics

Hydrodynamics (undergraduate version): Newton’s

law for continuous, deformable media.



Fluids: Gases, liquids, plasmas, . . .

Hydrodynamics (postmodern): Effective theory of

non-equilibrium long-wavelength, low-frequency dy-

namics of any many-body system.

non−conserved
density density

conserved

τ ∼ τmicro τ ∼ λ

τ ≫ τmicro : Dynamics of conserved charges.

Water: (ρ, ǫ, ~π)



Simple non-relativistic fluid

Simple fluid: Conservation laws for mass, energy, momentum

∂ρ

∂t
= −~∇(ρ~v)

∂ǫ

∂t
= −~∇~ ǫ

∂

∂t
(ρvi) = −∇jΠij

mass × acceleration = force

Constitutive relations: Stress tensor

Πij = Pδij + ρvivj + η

(

∇ivj +∇jvi −
2

3
δij∇kvk

)

+O(∇2)

reactive dissipative 2nd order

Expansion Π0
ij ≫ δΠ1

ij ≫ δΠ2
ij



Regime of applicability

Expansion parameter Re−1 =
η(∂v)

ρv2
=

η

ρLv
≪ 1

1

Re
=

η

~n
× ~

mvL
fluid flow

property property

-1

Bath tub : mvL≫ ~ hydro reliable

Heavy ions : mvL ∼ ~ need η < ~n

Note: Bacteria swim in the regime Re−1
≫ 1 but Ma2 · Re−1

≪ 1.



Breakdown of fluid dynamics

Fluid dynamics is a universal theory but the breakdown of hydro, the

emergence of non-hydrodynamic modes, is not.

Two extreme cases: Non-interacting particles or strongly collective, but

non-hydrodynamic (ωm(q → 0) 6= 0) modes.

Ballistic motion Quasi-normal modes



Shear viscosity and friction

Momentum conservation at O(∇v)

ρ

(

∂

∂t
~v + (~v · ~∇)~v

)

= −~∇P + η∇2~v

Navier-Stokes equation

Viscosity determines shear stress (“friction”) in fluid flow

F = A η
∂vx
∂y



Kinetic theory

Kinetic theory: conserved quantities carried by quasi-particles.

Quasi-particles described by distribution functions f(x, p, t).

∂fp
∂t

+ ~v · ~∇xfp + ~F · ~∇pfp = −C[fp]

C[fp] =

�

p

-

�

p

Shear viscosity corresponds to momentum diffusion

η ∼ 1

3
n p̄ lmfp



Shear viscosity: Low density limit

Weakly interacting gas, lmfp ∼ 1

nσ

η ∼ 1

3

p̄

σ

shear viscosity independent of density

Maxwell (1860): ”Such a consequence of

the mathematical theory is very startling

and the only experiment I have met with

on the subject does not seem to confirm

it.”



Shear viscosity: Additional properties

Non-interacting gas (σ → 0): η → ∞

non-interacting and hydro limit (T → ∞) limit do not commute

Strongly interacting gas:
η

n
∼ p̄lmfp ≥ ~

Quantum bound. But: Kinetic theory mat not be reliable!



And now for something completely different . . .

This is an irreversible process, ∆S > 0.



And now for something completely different . . .

Ringdown can be described in

terms of stretched horizon that

behaves as a sheared fluid

η =
s

4π

Note: Unusual thermodynamics, e.g. ζ, C < 0.



Idea can be made precise using the “AdS/CFT correspondence”

Strongly coupled thermal

field theory on R4
⇔

Weakly coupled string theory

on AdS5 black hole

CFT temperature ⇔ Hawking temperature of

black hole

CFT entropy ⇔ Hawking-Bekenstein entropy

∼ area of event horizon

z AdS

R
4



Holographic duals: Transport properties

Thermal (conformal) field theory ≡ AdS5 black hole

CFT entropy ⇔ Hawking-Bekenstein entropy

∼ area of event horizon

shear viscosity ⇔ Graviton absorption cross section

∼ area of event horizon

Strong coupling limit

η

s
=

~

4πkB

Son and Starinets (2001)

0

h̄

4πkB

η

s

g2Nc

Strong coupling limit universal? Provides lower bound for all theories?

Answer appears to be no; e.g. theories with higher derivative gravity duals.



Perfect Fluids: The contenders

QGP (T=180 MeV)

Trapped Atoms

(T=0.1 neV)

Liquid Helium

(T=0.1 meV)



Perfect Fluids: The contenders

QGP η = 5 · 1011Pa · s

Trapped Atoms

η = 1.7 · 10−15Pa · s

Liquid Helium

η = 1.7 · 10−6Pa · s

Consider ratios

η/s



Perfect Fluids: Not a contender

Queensland pitch-drop

experiment

1927-2011 (8 drops)

η = (2.3± 0.5) · 108 Pa s



I. QCD and the Quark Gluon Plasma

L = q̄f (iD/ −mf )qf − 1

4g2
Ga

µνG
a
µν



Elliptic Flow (QGP)

Hydrodynamic

expansion converts

coordinate space

anisotropy

to momentum space

anisotropy
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Viscosity and Elliptic Flow

Viscous correction to v2 (blast wave

model)

δv2
v2

= −1

3

1

τfTf

(η

s

)

(

p⊥
Tf

)2

Grows with p⊥, decreases with sys-

tem size 0 1 2 3 4
p
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Many details: Dependence on initial conditions, freeze out, etc.

conservative bound
η

s
< 0.25



Higher moments of flow

Hydro converts moments of initial deformation to moments of flow

B. Schenke C. Gale et al.

Glauber predicts flat initial spectrum (n ≥ 3). Observed flow spectrum

consistent with sound attenuation

δTµν(t) = exp

(

−2

3

η

s

k2t

T

)

δTµν(0)



Everything flows (including p+Pb, and maybe even p+p)

Signatures of collective expansion (radial and elliptic flow) in high

multiplicity p+Pb collisions.

Mass ordering of mean pT

CMS (2013)

Mass ordering of v2(pT )

Alice (2013)

Further evidence for short mean free path? Or suppression of

non-hydrodynamic modes?



II. Dilute Fermi gas: BCS-BEC crossover

Leff = ψ†
(

i∂0 +
∇2

2M

)

ψ − C0

2
(ψ†ψ)2



Unitarity limit

Consider simple square well potential

a < 0 a = ∞, ǫB = 0 a > 0, ǫB > 0



Unitarity limit

Now take the range to zero, keeping ǫB ≃ 0

Universal scattering amplitude T =
1

ik



Feshbach resonances

Atomic gas with two spin states: “↑” and “↓”

open

closed

V

r

Feshbach resonance a(B) = a0

(

1 +
∆

B −B0

)



Fermi gas at unitarity: Field Theory

Non-relativistic fermions at low momentum

Leff = ψ†
(

i∂0 +
∇2

2M

)

ψ − C0

2
(ψ†ψ)2

Unitary limit: a→ ∞ (DR: C0 → ∞)

This limit is smooth (HS-trafo, Ψ = (ψ↑, ψ
†
↓)

L = Ψ†

[

i∂0 + σ3
~∇2

2m

]

Ψ+
(

Ψ†σ+Ψφ+ h.c.
)

− 1

C0

φ∗φ ,

� �



Universal fluid dynamics

Many body system: Effective cross section σtr ∼ n−2/3 (or σtr ∼ λ2)

Systems remains hydrodynamic despite expansion



Almost ideal fluid dynamics
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Determination of η(n, T )

Measurement of AR(t, E0) determines η(n, T ). But:

gas

heat current

viscous stress

n(x)

v(x)

xδΠ( )

transition regime

fluid The corona is not a fluid.

Can we ignore this issue?

No. Hubble flow & low density

viscosity η ∼ T 3/2 lead to

paradoxical fluid dynamics.

Q̇ =

∫

σ · δΠ = ∞



Possible Solutions

Combine hydrodynamics & Boltzmann equation. Not straightforward.

Hydrodynamics + non-hydro degrees of freedom (Ea; a = x, y, z)

∂Ea
∂t

+ ~∇ · ~ ǫa = −∆Pa

2τ
∆Pa = Pa − P

∂E
∂t

+ ~∇ · ~ ǫ = 0 E =
∑

a

Ea

τ small: Fast relaxation to Navier-Stokes with τ = η/P

τ large: Additional conservation laws. Ballistic expansion.



Anisotropic fluid dynamics analysis
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η = η0(mT )
3/2

{

1 + η2nλ
3 + η3(nλ

3)2 + . . .
}



Reconstructed η/n

Red band: This work. Right figure zooms in on Tc/s ∼ 0.17TF .

Black points: Same data, simplified theory. Dashed line: T-matrix theory (Enss et al.). Green band: QMC (Bulgac et al.)

η(T ≫ Tc) = (0.28± 0.02)(mT )3/2 η0(th) =
15

32
√
π

= 0.269

η/n|Tc
= 0.41± 0.15 η/s|Tc

= 0.56± 0.20



The bottom-line

Remarkably, the best fluids that have been observed

are the coldest and the hottest fluid ever created in the

laboratory, cold atomic gases (10−6K) and the quark

gluon plasma (1012K ) at RHIC.

Both of these fluids come close to a bound on the shear

viscosity that was first proposed based on calculations

in string theory, involving non-equilibrium evolution of

back holes in 5 (and more) dimensions.

Quantum limited viscosity and relaxation time explain

applicability of fluid dynamics in very small, very short

lived systems. Nature of non-hydrodynamic modes

remains to be explored.



Outlook: Critical Fluctuations
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Historical digressions



Historical digression: Mott’s minimal conductivity

(Sir) Nevill Mott predicted that the metal-insulator transition cannot

be continuous; there is a minimal conductivity.

σ

n1/3
≥ 1

(3π2)2/3
e2

~

This idea is not correct,

the metal-insulator transition can

be continuous.



Historical digression: Minimal shear viscosity

Danielewicz & Gyulassy argue that the shear viscosity cannot be zero.

Is this idea correct?


