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ABSTRACT

Collective nuclear structure studies on the four even-even isotopes of ogmium,
0s!86, 188, 190, 192 have been pursued using Coulomb excitation induced by O ~ ions
with incident energies between 42 and 80 MeV obtained from the Yale MP Tandem
Van de Graaff accelerator. The osmium isotopes span the important transition
region from highly deformed to nearly spherical nuclei located at the high mass
extremity of the rare earth region of collectivity and they have therefore long been
the center of much theoretical and experimental interest. The deexcitation radiation
has been observed singly, in coincidence with 016 jons backscattered from the
target, and in coincidence with other y-rays representing the 2* ~ 0% and 4% - 2%
transitions in each isotope. In Osl86, 188, 190 31) jevels through the 6% state of
the ground state rotational band as well as the 2*' and 4" levels of the so-called
y-vibrational band have been excited. In Os!88 an additional 0* level at 1086 kev
was observed while in Osl92 all known states except the unnatural parity 3* level
were detected. Furthermore, in 05188, 08190, and Os192 new states at 780, 840,
and 855 kev, respectively, are tentatively proposed with JTassignments of 2% or 3
ascribed as likely and not inconsistent with any of our measurements.

The main emphasis has been on the extraction of absolute reduced transition
probabilities (B(E2) values). These have been obtained, for the excitation of all
states previously known, by both model-dependent and model-independent analyses.
The results have been compared with several macroscopic and microscopic nuclear
models, with particular attention to that of Kumar and Baranger. The latter has
proved the most complete and successful of any in predicting both absolute B(E2)
values and the variations of these with neutron number in the osmium isotopes.

The trend toward the spherical or vibrational limit in 0s192 is calculated to be
somewhat sharper than is observed experimentally. Suggestions are made for
possible improvements in the pairing-plus-quadrupole model of these authors.
An interpretation of the osmium isotopes as typified by shallow potential minima for
moderately prolate deformations (and slightly axially asymmetric equilibrium
configurations in 0s!90, 192) and by extreme softness to vibrations in both 5 and
¥ emerges from this comparison and is actually confirmed by both the successes
and failures of the other models with which comparisons are made. Discussion
is also made of the possible existence and implications of finite excited state
quadrupole moments predicted in osmium by Kumar and Baranger and in other
spherical nuclei by other authors. Finally, suggestions for future experimental
tests of the theoretical calculations in this transition region are offered.
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I. ORIENTATION

There is as yet no exact mathematical technique for the complete calcu-
lation of the properties of a many-body quantum mechanical system. Except for
its lightest representatives, the atomic nucleus in general constitutes such a
system. In addition, even if such a mathematical apparatus were available, the
nuclear (or nucleon-nucleon) force is only very imperfectly known. In order to
make progress in the elucidation of nuclear structure one must therefore make
certain mathematical and physical assumptions and approximations. The recent
history of nuclear structure physics has consisted largely of a succession of such
nuclear models and has been characterized by a steadily improving accord between
them and the experimental facts which encourage and test them.

Broadly speaking, there are two striking features revealed by the data of
nuclear physics: the nearly independent motion of the nucleons in the nucleus and
the strong correlations among the motions of many nucleons resulting in apparently
collective behaviour. These two seemingly contradictory aspects have given rise
to two general models of nuclear structure, the shell model and the collective
model. Both of these, of course, have many variants.

The earliest collective models were ''phenomenological" in that they pos-
tulated, without derivation, that the nucleus possessed certain gross properties
implied by the data. Thus, for example, in order to explain certain features of
the data recognizable as similar to those of a rotating symmetric, quantum me-
chanical top, the nucleus was consequently assumed to be deformed and to rotate.
No accounting was made as to why this should be so.

The seemingly contradictory nature of the two models and the '""macroscopic"
nature of the collective model were disconcerting and led to attempts to derive
the collective model itself from a more basic or "'microscopic" viewpoint. In
particular, many attempts were made to obtain '"collectivity ' from a shell model
approach with residual interactions includedl_lo. As will be noted in the following
pages, such microscopic models have had impressive successes although much
remains to be done.

Of course, the shell model itself is, in a sense, phenomenological and




attempts have also been made to reproduce some of its features by starting with
even more basic ideas, on the nuclear force, derived from nucleon-nucleon scat-
tering datau. It should be remembered, however, that science must remain
phenomenological at some level. The most that can be hoped for is that that level
can be continually pushed back so that the phenomenological starting point may
become, in time, as ''fundamental"” as possible.

In their basic forms the macroscopic models of collective motion are sim-
plified accounts of nuclear structure which apply with accuracy only to those nuclei
which closely approximate the extreme limiting cases envisioned. Thus the rota-
tional model is quite satisfactory for highly and permanently deformed nuclei
relatively far from closed shells, whereas collective excitations in spherical nuclei
are often best described by the simple harmonic oscillator model. More sophis-
ticated models often attempt to incorporate deviations from the extremes by treating
the sources of these deviations as small perturbations on the basic model structure.
One of the interesting tests of these models and of the degree to which nuclei behave
according to their simplified pictures is therefore in those regions of transition
in which the nuclear properties vary between the limiting cases through an inter-
mediate stage characterized by large deviations from either extreme.

Generally, the macroscopic models have one or more free parameters
whose values must be determined separately for each nucleus to which the model
is applied. The hope is that, as one spans a region of the periodic table, these
parameters will exhibit a smooth variation. The microscopic models, on the other
hand, have the advantage that they seek to fit the properties of nuclei in an entire
region with a single set of parameters. The parameters may vary somewhat from
nucleus to nucleus but the variation should, ideally, be predicted and determined
by the model itself. Since an entire region must be serviced by one parameter
set, the most sensitive areas in which to test these microscopic models are, again,
those in which one finds the greatest variations of nuclear properties.

The purpose of this thesis is to provide a test of certain macroscopic and
microscopic collective nuclear models in one of these particularly sensitive areas
of the periodic table. The region chosen is that spanned by the even-even isotopes

of osmium. These are found at the high A end of the rare earth region of collec-




tivity. This transitional zone is the only one known12 in which the variation between'
highly deformed and nearly spherical nuclei occurs gradually ~over a significant

span of nuclear species. Phenomenologically speaking, the nuclei Os186’ 188 are
fairly well approximated by the rotational model. The incipient trend in these two
nuclei toward the vibrational limit emerges much more clearly in 08190‘ Finally,
by 03192, the vibrational extreme is definitely being approached although strong
remnants of rotational structure are also intermingled. The complementary
transition zone at the low A end of this collective region is spanned much more
abrupt1y25’ 117.

Among the properties of the nucleus some of the most sensitive to the details
of the nuclear wave functions are transition rates. Even small admixtures of other
states into the wave function for a given level may drastically alter the matrix
elements involving this state and therefore its excitation and deexcitation proba-
bilities. On the other hand, properties such as its energy may be only slightly
affected. Therefore the principal stress in this thesis has been on the accurate
measurement of the various reduced matrix elements (essentially '"B(E2) values'")
interconnecting the several low-lying collective states in O:s186’ 188, 190, 192.

The results reported here improve and expand the existing data on each
of the four nuclei, However, the primary interest that this work hopes to engender
is in any additional light it may shed on the detailed structure of the osmium tran-
sition region, viewed as a whole, and in any consequent insight gleaned into the
more general problems of collective nuclear motion and its basis in the behaviour
of the individual nucleons and in their mutual interactions.

The results obtained here are compared to the predictions of several models.
The specific emphasis has been on the comparison with microscopic calculations
and in particular with the recent work of Kumar and Baranger13. Certain recent
successes14 of their theory have raised hopes that a more comprehensive under-
standing of collective behaviour may now be within reach. The results of the work
reported here have more thoroughly tested many of the predictions of the Kumar
and Baranger calculations and some comments are made as to possible directions

of improvement in their model. As an overall conclusion, it may be said that the

hopes initially raised for that model have not now been diminished and that it has,




in several ways, proved considerably proficient in its treatment of a difficult
region. It will be of interest to test it further in certain specific ways mentioned
in Chapter VII and especially to compare its predictions, when they become

25, 27, 117, 118

1
available 21, with data obtained previously on the structure of the

light end of the rare earth region.
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II. THEORETICAL CONSIDERATIONS

A. Macroscopic Models

Despite the impressive successes of the nuclear shell model it has long
been noted that, in its simpler forms, it could not account for such experimental
facts as extremely large nuclear quadrupole moments, enhanced E2 transition
rates, and certain features of energy level and spin and parity systematics. The
need was recognized for the introduction, somehow, of collective effects involving
many nucleons. Phenomenological or macroscopic models were developed to
include these effectsls—zz and, through the agency of the agsumed cooperative or
correlated motions, quadrupole moments and transition probabilities much larger
than the single particle estimates were obtained. It was also found, for example,

17, 20, where J is the

that the often observed energy level relation, EJocJ (J+1)
angular momentum, could be derived on the assumption of a deformed nuclear
shape with its consequent rotations. Early successes of these simple models led
the way to many refinements involving, for example, the inclusion of previously

29, 31 (e.g., the rotation-vibration interaction) in the form of

neglected effects
perturbations on the basic model structure.

Although a more microscopic understanding of collective motion is now
emerging and although the phenomenological models have certain obvious short-
comings (see Chapter I), their past and present value in correlating vast amounts
of data is undisputed. Furthermore, they still provide a valuable physical picture
and conceptual framework in terms of which it is often extremely convenient to
think. Finally, in their more sophisticated present-day forms they are still
frequently quantitatively accurate and usefulzs’ 27.

The following several pages will briefly summarize the basic ideas behind
some of these models. Extensive detail is unnecessary since many excellent (often
classic) articles and review articles on this subject abound in the literaturelsazo.

The model of Bohr and Mottelson15 pictures a competition between long
and short range forces near the nuclear surface that can result in vibrations about

a spherical equilibrium shape or in a permanently deformed structure capable of




undergoing rotational motions. In the model the nuclear surface is expressed by

the familiar result (relative to space fixed axes):

R =R |1+ Eaxu (t) qu(e, ®) -1
Au

where R0 is the equilibrium spherical radius and a)\u (t) expresses the deviation

of multipole order Mu from sphericity. Y, (8, @) is the usual spherical harmonic.

For nuclei with spherical equilibrium shape)tuoscillatioﬁs about that shape correspond
to the (assumed small) variations in time of the oz)\u (t)'s.

Expansion of the kinetic and potential energies about the equilibrium shape
leads to a lowest order Ha"miltonian for these collective excitations analagous to

that of a simple harmonic oscillator:

_ _ 1 . 2, L -
H‘T+V“2§Bx|°‘xu| 22 A|xu -2
A A,

with the frequency of oscillation being given by: Wy =f_07B_X In eq. 2 (equations
are referred to by Arabic ‘numerals in the chapter in which they occur, by their
full designation elsewhere), C)\and B)\ may be likened to the restoring force and
effective mass constants of a simple harmonic oscillator although they are best
determined quantitatively by fitting the empirical data. X = 0 represents density
oscillations while X =1 corresponds to translational modes of excitation of the
entire nucleus. \= 2, therefore, characterizes the lowest order of interest, that
corresponding to quadrupole oscillations. Henceforth, we usually specialize to

this case although the more general treatment is analogous. The energy levels

21
associated with the oscillator model are equally spaced and are given by

E = hw (N+5/2) II-3

where N is the number of quadrupole phonons involved in the excitation. The ground
m + .
state of an even-even nucleus has N =0 and a J assignment of 0 . The first quad-

+
rupole vibration produces a 2 state. The next excitation (N = 2) is obtained by




coupling two quadrupole phonons together and the result is a degenerate triplet of
states of spin and parity: 0+, 2+, 4+. An N = 3 excitation is also possible. It is
fivefold degenerate with levels of spins 0, 2, 3, 4, 6. (This latter statement
may be trivially shown using the technique of Young tableaux21). In practice

the degeneracy of these multiple phonon states is broken by residual interactions.
Scharff- Goldhaber and Weneser22 have considered the breaking of the degeneracy
via coupling to particle states and have also reproduced the experimental énergy
ratio E2+,/ E2+e 2.2. (A prime (') on a state label indicates the second lowest
occurrence of a state of the indicated spin and parity). Anharmonic terms in the
potential have also been included23 and in fact their presence is actually indicated
by results of microscopic calculations using the higher random phase approximation

Transition matrix elements involving the electric quadrupole operator may

be easily calculated and are given by21

2
2 3Z e Rg A N
< - = II—4
EI N-1|M(E2,u)|N>| 5\~ Wil

where Z is the atomic number. Thus an important feature of the model is the
prediction that

B(E2: 2 - 2 ) ' II-5

B(E2: 2 -0 )
(See Section B of this chapter for a definition of the quantities B(E2:Ji—‘ J f) ).
Finally, since the quadrupole operator is a one phonon creation or destruction

1 +

operator the transition 2+ - 0 is forbidden: that is, in the ideal case,

B(E2: 2 =0 ) II-6

BE2:2 - 2%

+ o+
By the same argument, transitions between the 0 , 2 , 4 states of the N=2
triplet are likewise forbidden.
In many situations the above model is inadequate since the nucleus is

permanently deformed. In this case it is best to specify the nuclear orientation




in a body-fixed system. This is done by defining quantities av by:

a =Za 02 (®,&, ) -7
v 2 py

where @ &, Vare the Eulerian angles relating the body-fixed and space-fixed

2 . . . .
= = =0
Ly is the usual rotation matrix. Since a2 a 9 and a1 a_1

there are only five independent degrees of freedom and these are specified by

axes and where D

a_, a_ and the three Eulerian angles. It is customary to write a,, a in terms

2’70 0
of two new parameters, f and 7:

a,= B cos v
II-8

a =L Bsin v
2 /s

‘Eu | o UI 2 - T Iaul 2. _82 andsoV=%C 32) while y determines the degree
v
of departure from axial symmetryzo. With these variables the kinetic energy
may be separated into rotational and vibrational parts and is written
2
1 : 2 2 .2 Ji
T=—5B(B +B ¥ )+ N -9
i
h .

where Ii is the moment of inertia about the it axis. Transforming the above
classically-oriented description into the operator formalism of quantum mechanics

26
yields an expression for the complete nuclear Hamiltonian

H=H.+H +H +V

B Y rot
2
!
- 14 5 (84 a_\ . 12 1 sin 3y —2 )
2B g EY 8ﬁ p sin 3y oy LY
1I-10
2 2 2 2 2
+[h # H 2} »2 9 [h A ” 2 2]
- + J(J+1)-K + —K +|—/— -—[|J. - |+ V
411 412 213 2I1 212 _1 2

where K is the component of angular momentum along the nuclear symmetry axis

and V is the potential energy. In general, V =V (B, ¥) but often one assumes a




form V = % CB2 although this is probably not adequateg’ 23. The termin (J12 - d 22)

has non-zero matrix elements only between states differing by + 2 in their component,
K, of angular momentum along the nuclear symmetry axis and is usually neglected
or treated as a perturbation. In the adiabatic approximation and provided V = V(8),

. . . . . 20
the wave function may be written in antisymmetrized form as:

J
b =fJ(ﬁ)KZ0 g (¥) | IMK >
1 I-11
2J +1 : J J J
h = -
where |JIMK> [16 3 (l+6KO)] [ Dipe * (D" Dy o

From eq. 1l it is apparent that, for K = 0, only even J are allowed while, for K # 0,
J may be odd. In all cases J>K and the symbol Z' denotes even values for K.

In this model the nucleus may simply rotate about an axis perpendicular to
the axis of symmetry. It may also undergo axially symmetric or asymmetric shape
oscillations in, respectively, 8 and v, with rotations superposed on these vibrational
excitations. The excited rotational "bands'" thus formed are characterized by

+

+  + +
K=0,J=0,2,4+....forthe"B band" andK=2,J=2+,3 , 4 ....for the

"y band". In all these cases:
2

EJ=%[J(J+1)—K2] . 1I-12

The model described above has many other ramifications. In particular,

since the rotational and vibrational parts of the wave functions are known and separable
it is possible , therefore,to evaluate relative transition probabilities for both '
interband and intraband transitions. One obtains, for example, the following

important results21

2 2
B(E2: I K~ J.K)=e"Q~ <J 2KO|J K
and
BE2:J - J_ ) - <J 2KO|J K>2
1 27 1 2 I-14
. - . 2 -
B(E2: I3~ J,) <J,2KO|J K>

for transitions within a band where Qo is the intrinsic quadrupole moment and the

right-hand sides contain the usual Clebsch- Gordan coefficients.
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21
For interband transitions one obtains, similarly ,

B(E2:J,K,—'JK) <JK2 K IJ 2

B(E2: . K. = J )<JK2K K|J.K>Z -15

Of course, in practice, this simple model is rarely obeyed accurately.

We have, for example, neglected mixing between K = 0 and K = 2 bands and the
effects of the Coriolis force17 and its antipairing propertieslo. We have also
employed the adiabatic approximation in which collective frequencies are assumed
small compared to those for independent particle excitations. Although corrections
to energy levels, spins and parities due to these approximations may not be large,
strong dynamic effects can occur since even small admixtures of wave functions
may drastically alter transition matrix elements and intensities.

One specific correction to the model described above is particularly
important to include. It was cited above and involves the calculation of the effects,
on energy levels and transition probabilities, of the mixing of § and ¥y band wave
functions into the ground state band29’ 30, 120. These effects may be included
within the framework of the model, via first order perturbation theory, since the
mixing arises from terms in the Hamiltonian originally present (see eq. 10) but

27

subsequently neglected. One may easily show25 ’ that the correction terms to

the ground state rotational band energies are of the form:

B 2 2 2
AE. = -€¢, hw,J (J+1
I1-16
Y 2 2 2 ]
A = - - +
and E € hwy[J F+1)°-25@ +1)
where ¢ 8 and ey are defined below. Thus eq. 12, for the ground state band,
becomes
E; = AJ(I+])+ BJ? J+ 1)2 1I-17

1
where A = 71/21 , I' being a renormalized moment of inertia, and where B is given
by the sum of the coefficients of the terms in J2 (J + 1)2 in eq. 16. An equation
for the energy levels of the type given by eq. 17 is gratifyi ng because the experi-

mental results,in nuclei not too far removed from the rotational limit, often require
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exactly such an expression. The B(E2) values for transitions between bands are
also strongly affected by the mixing and deviate from the Alaga relations28 relevant
to pure bands. The amount of deviation is expressed through parameters z _ and Z,y

B

which in turn are related to the ¢, and ey of eq. 16 via the equations

B
z =2¢.0,;: z = € o0 /24 II-18
B BB Yy vy
where all quantities are defined and discussed in references 25 and 27. From one
absolute transition probability and an interband branching ratio z y and o y (and

z 8 and aﬁ) may be determined empirically and thus eqgs. 18 may be solved for
ey (and ¢ B) and the coefficient B in eq. 17 determiped. It turns out25’ 21 that
the contributions to B obtained in this way are not sufficient to explain the experi-
mental deviations from the J(J + 1) law. But, even this failure is enlightening for
it indicates that other important aspeéts of the collective nuclear motion are being
neglected. Marshalek9 has recalculated B on a microscopic model and found other
large contributions to B than those considered above. His results are in much
better accord with 'experiment. Much more detailed treatments of these rotation-
vibration interactions in the macroscopic model are provided in references 25, 27,
117, 120 and 29-31 where numerical and analytic results necessary for the application
of the theory to specific cases (as is done in Chapter VI of this thesis) are derived
and tabulated.

Thus far we have considered only the case in which the equilibrium value of
v= 0, that is, axially symmetric nuclei. This restriction is not essential and,
in fact, Davydov and co-workers32"35 have calculated the effects of permitting
non-zero equilibrium values of 7. Intheir early calculations 32 B and ¥ were
kept fixed at their equilibrium values but this adiabatic approximation was later
dropped34 (although actual numerical results for the case of variable yhave not
yet become available).

Very briefly, the model in its later, more general form34 considers the
Hamiltonian for B vibrations and for rotations in an axially asymmetric nucleus to

be given by

2
_h 1 5 3.9 IX II-19
H= "8 [ g9 58 (B aﬁ)' g 4B ¢ sin® (v-%ﬂ).
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It will be noted that this is essentially the same as eq. 10 provided one neglects
mixing terms and ¥ vibrations and assumes for the three moments of inertia the
values

I, = 4Bstin2 y-2m)\) II-20

appropriate to the hydrodynamic model. The essential difference is that ¥ is
not set equal to zero. The rest of the model calculations consist simply of solving
the Schrodinger equation with this Hamiltonian for the wave functions and rotational
energy levels. Transition probabilities and branching ratios are then easily
obtained since the wave functions are known. Davydovsz_35 and Davidson and
Davidson36 tabulate many of the numerical results.

All of the predictions of the model are determined for a given nucleus once
two parameters, ¥ and p, are specified. These are determined empifically
from the ratios: E4+/ E2+ and E2+' / E2+. v is the usual asymmetry parameter
(0o <y¥< 300) while y is a measure of the "stiffness ' against g vibrations. For
1<1/3 coupling between rotations and g vibrations is small (adiabatic limit) while
for u>1/3 the nucleus is 'soft" . For small y the expression obtained for the
rotational energies contains a term of the same form as one suggested by Mallman
and Kerman37 on empirical grounds.

The main result of the model is that one obtains a set of rotational energy
levels comprised of the levels usually associated with the ground state band plus
a second group that decreases rapidly in energy (from E— =) as ¥ increases from
0 to /6. This second set of levels has spins of 2, 3, 4....and is the analogue
of the y-vibrational band states in the axially symmetric model. A crucial differ-
ence is that, in the latter model, the 7-band states are rotations based on vibra-
tional excitations, that is, their structure is significantly different from the ground
state, while in the Davydov calculations there are no essential differences among
any of the rotational levels. It would seem, therefore, that an experimental
decision between these two models could result in considerable physical insight
into the structure of the low-lying states in collective nuclei. Unfortunately, it
has been pointed out38 that results of the Davydov model with finite 7y are essentially

identical to those of the Bohr-Mottelson model, with zero equilibrium value of ¥y
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but with vy =y , in all predictions concerned with measureable
rms Davydov
quantities involving only low-lying states with K = 0 or 2. The two models do
reach different conclusions concerning K = 4 ba.nds39 but these are infrequently
observed and hard to study. However,the models also differ in their results for
. . + +'
the relative matrix elements to the 2 and 2  states via beta decay from the
. . .39
neighboring odd-odd nuclei ~. Recently, Yamazaki et a.l39 have considered

186, 188 186, 188. Despite

data pertaining to the decay of Re into the final nuclei Os
the early successes of the Davydov calculations as applied to the osmium nuclei40 s
they have concluded that the axially symmetric Bohr-Mottelson picture is to be
favored over the Davydov model in these isotopes. There is a further discussion
of the quantitative application of the Davydov model to the osmium isotopes in
Chapter VI of this thesis.

There are numerous other calculations along the lines of the phenomeno-
logical models. Those of Mallman and Kerman37 and of Faessler_ei_a_lf11 are
noteworthy examples. We cannot go into all of these here but refer the reader
to the literature.

Without the aid of parameters specifically fitted to each nucleus, most of
the phenomenological approaches can predict only relative transition rates or,
at best, admittedly crude limits on absolute ones (e.g., hydrodynamic model
estimates). On the other hand, one of the most impressive features of the micro-
scopic theories to be discussed below is their calculation of absolute B(E2) values.
Since these latter are precisely- what were measured in the experiments performed

here, and since they provide an extremely sensitive test of calculated wave functions,

we now turn out main attention to these microscopic models.
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B. Microscopic Models

In this section we outline a particular form of microscopic theory of
collective motion. It borrows heavily from formalisms developed in the treatment
of electron g‘ases124 and in the BCS theory of superconductivity43. The approach
déscribed here was largely initiated by a suggestion of Bohr, Mottelson and Pines42
that the energy gap in the spectra of even-even nuclei could be derived with the use
of a pairing force. A formalism for the calculation of the effects of a pairing-plus-
quadrupole residual interaction was developed and applied to the nuclear problem
by many authorsl_lo. These calculations were executed both with and without the
adiabatic approximation.

The literature on the subject is considerable and the mathematical details
can become quite involved. The conceptual structure and formalism, however, in
a sense is not difficult although questions relat|ed to its validity and justification
are often quite subtle. These latter will not be dealt with here in any detail nor
will a generally complete treatment be offered. The main emphasis will be placed
upon an indication of the manner in which collective excitations can be obtained by
the introduction of coherent superpositions of simpler excitations. To do this, we
sketch a simplified version of this sort of approach and refer the reader, for
greater detail concerning the formalism, to articles by Belyaev1 and by M. Barangers,
and to the excellent treatment given by Lane44. The latter not only elucidates the
formalism in a clear and systematic manner but also provides an historical guide
to the development and applications of the theory. The treatment below is based
largely on these three references.

The development to be given is not intended to disparage other attempts
to derive collective effects from a microscopic basis. Important developments
along these lines, to cite but three, are the Hartree-Fock calculations of Kelson46
and of Kelson and Levinson45, the surface delta force model of Moszkowski47 and
the derivations of nuclear deformation and rotational band structure through the
use of the SU3 symmetry group48.

In the analysis that follows it is convenient to use the language of second

quantization. It is assumed that no extensive discussion of the notation and concepts
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of creation or destruction operators or of their commutation relations is necessary,
Let H be an independent particle Hamiltonian. Suppose that we can find a set of

operators Or such that

[H,O]=ZM o) II-21
r rs s .
s

If we define another set of operators, Ooz+’ by

+

0] =Zx o , 11-22

o T T T
then it follows that

[H,01=woO’. 1I-23

o o o

The vectors i‘a and energies wa are given by the matrix equation:

M = w 11-24

o aia
where M is the matrix whose elements are Mrs' Now, if eq. 22 is true, then for
any eigenstate Y of H (of energy E), there is another eigenstate gba of energy
Eoz given by .

p = Oa ) II-25

where E -E=w

In particular, if zbo is the nuclear ground state defined by

= 11I-26
Oawo 0,

then excited states of energy Ea = Eo + wa are found by operating on qbo with O;.

The justification of the so-called linear approximation of eq. 2l is discussed
in reference 44 and involves the assumption that the operators O;, Ooz satisfy
Boson commutation relations even though they are constructed from pairs of
Fermion creation and destruction operators. This ''quasi-boson" approximation
is reasonable provided the number of particles in a shell is much less than the
number of states in that shell.

We must now consider the nature of the set of operators Or in eq. 21.

+
Several approximations are possible. To consider these, let us define Ai to be
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an operator that creates a particle in the orbit P, and a hole in orbit hi' Ai is
the corresponding particle-hole destruction operator. Then, following Lane44,

we can have, in set notation:

+
{o }={A} -27a
r i
+
{Or}f{Ai}+{Ai} I1-27b
or { Or} = { A+} +{ A_} +higher terms I-27c
! 1" of order Ai Ai+'
Eq. 27a is known as the Tamm-Dancoff or TD approximation. In this
case eq. 2] becomes: ,
+
[H,A'] = z M A" 1I-28
i ; 1jj
It is easy to show from this that
Mi' = <jlH|i> -<O|H|O0>§_,
] 2 II-29

_z <O]Ain+|n> <n|H|] O>
n#0

where |O > is the unperturbed ground state defined by Ai | O>=0. Note, however,
that the condition Ooz b = %:xba. Ar d)o = 0 implies that wo also satisfies Ailbo = 0:
that is, qbo, too, is an unperturbed ground state, a pure shell model state. Thus

the nuclear ground state in this approximation is "uncorrelated ' and hence has

no "collectivity "' built into it. Now, the excited states are formed from the

ground state not by a single excitation, but by a linear combination of one-particle-one
hole excitations. This enables one to obtain the desired collective enhancements

for matrix elements between excited states. However, the lack of correlations

in the ground state results in insufficient enhancement in matrix elements involving
this state44. Thus the approximation of eq. 27a is inadequate for many purposes

and we turn to the model corresponding to eq. 27b. This is called the random phase
approximation (RPA), while eq. 27c is often referred to as the higher RPA or HRPA.

In the RPA, eq. 21 becomes (analagous equation exists for [ H, Ai'] ):
[H, A ] =z (M, A" + M A) 11-30
i ij i ij 7 j
j
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Again, we can easily show that Mij isgiven by eq. 29 while
Mi; = <ij|H|O> II-31

The physical interpretation of this and the other approximations in terms of
"forward- and backward-going graphs " is well-known49. Suffice it to say here

that since, in the RPA,

+
0 =Z(x AT +y A, 1I-32
(0 ar r ar r
r

the condition anbo = 0 is easily shown to imply that
+ + + .+ + +
= + A + A +....110> 1II-33
b =[x, inj P4 injklAiAjAk 1 I
ij ijkl
where the x's are the amplitudes for different excited particle - hole configurations in
a,bo and are determinable from the condition Oad)o = 0. Thus it is apparent that
d)o, the ground state, is not unperturbed in this case but is "correlated'or collective
in nature in that it is a coherent superposition of many configurations. Excited

states gba are given by:

+ o, + o .+ .+ +
- - 110> II-34
Yo = Oy ¥ [z X Ayt Z Xie A3 Ay A o110
i

The eigenvalue matrix equations for wa are:

Mx - My = wXx
o o oo I1-35

M% - My = ¥ .
and xa ya waya

Justification of the RPA is difficult and perhaps best approached via time-
dependent Hartree-Fock theory. In the latter, the matrix equations (eqs. 35) are
also obtainedz’ 49 provided one performs a linearization in the time-dependent
density matrix. In this case, however, the linearization finds its own justification
in that, without it, the coupled differential equations for the elements of the density

matrix are non-linear and hence would not result in the correct time dependence




18

(harmonic or sum of harmonc components) for the calculated wave functions.

A crucial feature of the RPA is that all states consist of linear combinations
of one particle-one hole states since O'; is basically a sum of one particle-hole
creation and destruction operators. The validity of this is not always transparent
but the limitation may be avoided by using instead the HRPA of eq. 27c¢ in which
the third term in { Or'} can create or destroy two particle-hole excitations. We
shall not go into detail on the HRPA since its treatment is similar to the previous
cases considered although the mathematical details are more complex. As will
be seen in Chapter VI, the use of the HRPA in the treatment of nearly spherical
nuclei may be necessitated by the need to account for apparent anharmonicities and
possible finite excited state quadrupole moments.

Now that the basic formalism is developed the calculation of ground and
excited states is reduced to the evaluation of the elements of the matrix M (see
egs. 29, 31). Once this is done the eigenvalues wa and the expansion coefficients
Xar and/or ycxr may be obtained by solving eqs. 24. Thus the operator O-; is
determined and from this the structure of ground and excited states is calculable.
On ce this is done the problem is fully determined and any desired quantities, such
as transition rates (or B(E2) values) may also be calculated. In considering the
nature of the nuclear matrix elements occurring in each Mij’ Lane44 discusses what
he calls 'schematic ''models, that is, model assumptions concerning the quantities
<ilVlj> and <ij| V]| 0> that enter in the matrix elements of the Hamiltonian
H. For example, assume that all matrix elements are of the form:

<i]Vlj> = CDiDj 1I-36

where c is a constant. Inserting this value into eqs. 29 and 31 and solving the
matrix equations 35, easily leads to the following result for the energy w,

in the RPA, of the first excited collective state:

1 1
-A - + A
wa €k wa €

=1 II-37

k

+
where Aek is the particle-hole energy corresponding to the creation operator Ak .
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Eq. 37 shows that the excited state energies are obtained by the solution of a dis-
persion relation in wa. The same type of result is obtained in the TD approximation
and with certain more complicated schematic forms for the matrix elements. 4

The assumption of eq. 36 and similar schematic approximations are equiv-
alent to adoption of a multipole force for the residual interaction. Thus, for example,
a quadrupole interaction is frequently used to simulate the lower order terms in
a multipole expansion of the nuclear force.

The discussion above has not specifically introduced the pairing force.
However,the entire approach can be carried over nearly unchanged to this latter
situation provided one considers the operators Ai+ and Ai as creation and destruction
operators of quasi-particles rather than of particle-hole excitations. That is, -the above
formalism allows one to consider the generation of collective states (and non-
collective excitations as well) that arise with the introduction of a multipole force
as the residual interaction between independent shell model particle states. However,
when pairing forces are introduced, the shell model particles are no longer inde-
pendent, or, alternatively, the quadrupole force is not the full residual interaction.
The schematic form of the matrix elements (eq. 36) then no longer remains simple
and the advantages of the method are lost. However, if a canonical transformation
from interacting particles to new, approximately independent, entities, called
quasi-particles, is made, then the matrix elements again assume the simple
schematic form when the quadrupole force is introduced with H now taken as the
Hamiltonian for nearly independent quasi-particles.

We now consider in some detail this treatment of the pairing force. In
the discussion below the interactions between neutrons and protons are neglected.

A partial justification of this approximation is that neutrons and protons are filling
different major shells and so little mixing will occur. Again, the notation of
second quantization will be used. Defining c:+ and cV+ as the creation and
destruction operators for the single particle shell model state | v, +m > we can

introduce the pairing force by writing the nuclear Hamiltonian asG:

+
H =H +H _ = )
o sp  pair Z € (cu+ CutCuCy

II-38
Z (c +c c _cw+)

v
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where the first term, Hsp’ is the single particle Hamiltonian, and eu is the eigen-
value of the (degenerate, time reversed) single particle states u+ and v . Hpair
is the pairing force Hamiltonian and G measures the strength of the pairing inter-
action. This latter is defined, in the j-j coupling scheme, as an attractive force
acting only between pairs of particles, of the same j and opposite projection quantum
numbers +m, coupled to total angular momentum J = 0. The matrix elements

of the pairing force between such two-particle states are defined to be independent
of j (and m) and to have the constant value, -G.

The reason for the introduction of the pairing force is that it is easy to
handle analytically and that it mocks up the effects of the short range components
of the nuclear force, that is, the higher order multipoles in an expansion of that
force. The behaviour of heavy nuclei is viewed as due to a competition between
the short range pairing force and the long range quadrupole interaction. In an
unfilled shell with N particles the total pairing force is proportional to N/2 while
the long range forces are proportional to N(N-1). Thus, as the number of nucleons,
N, in a shell is increased, the long range interaction tends to dominate over the
pairing force, leading to the well-known (quadrupole) deformations of the nuclear
surface and the consequent rotational spectra. Near closed shells, however, the
pairing force may dominate and produce spherical nuclei.

It is not intended that this composite pairing-plus-quadrupole residual
interaction, or the nuclear models based upon it, be exact replicas of the actual
nuclear situation. It is hoped, however, that this interaction, dealt with realis-
tically, effectively approximates at least a significant portion of the real residual
nuclear force,

To transform the problem from one concerned with interacting particles
(second term of eq. 38) to independent quasi-particles, we define creaction and
destruction operators for these quasi-particles by the canonical transformation of

Bogoliubov and Valatin50

+ + + +
o = U e 4 -V c-3; B =Uwc _+V c4 1I-39
v vV v v v v v v v v

where U2 + V2 =1 11-40
v v ,
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The destruction operators au, Bv are analogously defined. Physically, Uv and
Vv represent, respectively, the probability that the shell model orbit v is empty
or filled.

The meaning of the new operators and of the quasi-particles they create can
be seen by considering a level v well below the Fermi surface. Then VU=_- 1, U V=_‘ 0
and, for example, B:‘z‘f cu+; i.e., BJ destroys a particle in the | v,+ m > state.
Above the Fermi level, Uve 1, Vu=_‘ 0 and B: o= c:. creates a particle in the
| v, -m > state. For intermediate levels B: is a linear combination of particle

and hole creation operators. The inverse of eqs. 39 is the transformation

+
c+=0UU a +V 8
vV v

v v Vv

-4
c.=UB -Va
v v Vv v v

Unfortunately, the transformation to quasi-particles does not conserve
the number of particles. To correct for this we introduce a Lagrangian multiplier
A, the "chemical potential ', to serve as a constraint that the expectation value
of the number of particles in the ground state is N. Thus the Hamiltonian H0
becomes:

v _ 2
H =H - AN = Ho - 22X ZVU -42
1%

Substitution of eqs. 4l into eq. 42 for H' is straightforward and leads to the expression

' = 11-43
H U + H11 + H20 + Hint .

+  +
where H2 consists of terms containing factors of the form au Bv' and therefore

0
represents interactions between quasi-particles. These are assumed absent and

so we set
H = . 11-44
20 0

(Hint

U and H,., survive and are given by:

1
U = g (e -2)2v2 - g > UV U,vV, II- 45
v v v v v vV Vv

v vv

represents even higher order interactions and is also neglected). Thus, only
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and
2 2
H11= Z { (GU_X)(UU_VU)-'-G Z UU|VV|(2 UUV,)}
v

11-46
V! + +
+ .
x{ Yy ¥y BuBu}
Defining the gap parameter Aas
A= G Z U v 11-47
vV v
v
and the quasi-particle energy Ev by
E =\/(€ _>\)2+A2 , I1-48
v v
and substituting these into U and Hll’ we get for H' :
2 A2 + +
H' = - - + ) I1-49
R A D PR
v v
From the conditions specified by eqs. 40 and 44 one determines that
2 1 €, - A 2 1 €y- A 1
U= 51 ) 1 vy,= 511 - v I11-50
Ve, -y 2+ 2 g Ve, - 0% &2

Eqgs. 50 show that the occupation probabilities of levels vdo not fall off sharply
to zero at the Fermi level but trail off gradually over an energy range of the order
of 24,
The ground state of the nucleus contains no quasi-particles and so the
energy of this state, H= H'+ AN, is given by:
2

H=Z€2V2—A—. 1I-51
o v v G

In even-even nuclei the simplest intrinsic excitation corresponds to the breaking

of a pair of particles, that is, to the creation of two quasi-particles. Consequently
the minimum energy for such an excitation (see eq. 48) is 24, thus accounting for
the energy gap in even-even nuclei. (Actually, the gap can be somewhat less than

2 Adue to the effects of “blocking" in which changes in the Uv' s and Vu's in
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an excited state due to the presence of quasi-particle excitations leads to a reduced,

effective gap, There is no gap implied in the excitations of odd nuclei since

A ).
eff.
their ground states already contain one quasi-particle.
There are two unknowns as yet: A and X. However, if we know the single
particle shell model energies, €, and the pairing force parameter, G, then the

"humber equation "',
' 2
N =2 Z v <, I1-52
v
v

and the " gap equation" (resulting from substitution of eqs. 50 into eq. 47),

—2— Z L =1, 11-53
'\[(e - 2)2 + a2
1 2 v

are sufficient to determine both these unknowns. Finally, for completeness, the

ground state wave function is given by

. .
= | I U + V _ 0 > . 1I-54
LS v [ v v St Sy ] | ‘

and excited state wave functions are obtained by operating on zbo with linear
combinations of quasi-particle crea tion and/or destruction operators.

As can be seen from the above analysis, the only parameter, aside from
the single particle energies Gv , is the pairing force strength, G. G can be
determined empirically from the observed energy gap in even-even nuclei (but
one must beware of blocking effects) or from the odd-even mass difference. Once
G is so determined the nuclear problem in this model is solved. Excited state
energies and wave functions are known and transition rates involving matrix
elements of known operators may be calculated.

So far we have considered only intrinsic excitations. Collective states may
also be obtained and their properties can be calculated in two ways. Both methods
involve the introduction of the long-range quadrupole force. The first, and more
general, is to follow the formalism of the TD or RPA approximations described

earlier, defining the matrix elements <i|V|j> by
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<i|V]|j>=¢ Q. Q II-55
That is, the full Hamiltonian H is taken to be

H = H + H + = + . -
tot sp pair HQ—Q Hind HQ-Q 1-56

sp+ Hpair = Hin & the Hamiltonian for independent entities (quasi-particles), is
to be substituted for H in the RPA analysis.

There have been many calculations of this type in the last few years. Lane44
gives numerous references to the important calculations by Thouless, Valatin,
Sawicki, Fallieros, Goswami, Pal and many others on closed shell nuclei and on
studies of the validity and relative merits of the TD, RPA and HRPA approximations.
Yoshida51 has considered the implications of the microscopic theory in stripping
and pickup reactions while Cohen and Price51 have experimentally measured the
quantities Uu and Vu in the tin isotopes using the (d, p) and (d, t) reactions. More
relevant to the subject of this thesis are the early calculations of M. Barangers,
‘Arvieu and Veneronisz, Marumor153 and Tamura and Udagawa7. Numerical
calculations specifically related to this thesis on the 8 and % vibrational states,
including calculations of E2 transition probabilities involving these states, have

b

been performed by Bés and coworkers 4 and by Marshalek and Rasmussens.
Marshalel«:9 (among othersg), using a slightly different approach, has calculated
in detail the values of the coefﬁcient B in eq. 17. He discusses the various
contributions to B from mixing of 8 and 7 bands into the ground state band, from
centrifugal stretching, from the tendency of the Coriolis force to reduce the
strength of the pairing interactiop (Coriolis antipairing effect or CAP) and from
the influence of the Coriolis force on the independent quasi-particle motions
themselves. Faessler, Greiner and Shelinelo discuss the CAP effects on the
moment of inertia and on vibrational energies as well. They also estimate the
effects of blocking on the vibrational band moments of inertia.

The second method of calculating collective effects avoids the RPA formalism
(but is a limiting case of it) and considers the pairing-plus-quadrupole force in the
adiabatic approximation. ., Among the important early calculations of this type are

. .3
those of Belyaevl, Kisslinger and Sorensenz, Griffin and Rich3, Nilsson and Prior
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and Gallagher and Soloviev4. In the work of these authors the pairing formalism

was used as described above. However, the quadrupole force was generally included
earlier in the calculations by letting the single particle energy levels Gu be those

of particles in a quadrupole deformed Nilsson potential. Alternatively the quad-
rupole force can be included specifically as a term, - QQ, in the Hamiltonian. In
this latter case, the procedlire is to solve for the Lagrangian multiplier, u, by
enforcing the self-consistency constraint that the nuclear density distribution be

the same as the potential distribution. Mathematically this condition is expressed

as:
<@l |¥@>=Q II-57

where Qop is the quadrupole operator and Q ihe nuclear quadrupole moment.

Proceeding along these lines Belyaev' was able to calculate the nuclear
deformation and quadrupole moments as a function of the number of particles
outside closed shells. He was the first to explain the sudden onset of deformation
after a shell closure as opposed to its gradual development. Bés6 showed, in the
adiabatic approximation that collective excitation energies are much lower than
the quasi-particle energy gap A, that the microscopic Hamiltonian could be
written in the familiar collective form:

1

2 1 "2
= + — — -
H=W 5 CQ”+—BQ". 1-58

He calculated C byconsidering the variation of nuclear energy with small changes
in the deformation and B from the " cranking model" 55. Once B and C are

ol = Moo = MVC/B
In particular, Bés calculates both the energy and B(E2) values associated with

determined, it is easy to obtain the collective energy Ec

the 7y band. Kisslinger and Sorensen7 had previously calculated in a similar
manner the energies of the lowest collective 2+ states in single closed shell nuclei.

One of the greatest successes of the adiabatic model was the calculation of
moments of inertia of deformed nucleil’ 3. The phenomenological model had been
notoriously unable20 to calculate moments of inertia that compared favorably to
experimental results. The microscopic calculations used the same cranking formula
as the macroscopic theories, but the energies and wave functions inserted into

that formula were those of the quasi-particles. Written in terms of the single
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particle wave functions the result is

1=2n" z ——<E:'+JE'::> (U V-V Uy 1-59
The last factor in the numgxl'}a'tor and the large quasi-particle energies in the denomi-
nator both serve to reduce I below the macroscopic estimates, bringing it into excel-
lent accord with experimental results for almost all nuclei in regions of deformation.

Before closing the discussion of the various microscopic theories it is
important to mention specifically that of Kumar and Baranger13. Recent measure-
ments56 of large spectroscopic quadrupole moments in nuclei heretofore considered
spherical have cast some doubt on previous versions of the so-called vibrational
model. These versions have generally predicted for these nuclei that Q = 0. The
calculations of Kumar and Barangerls, however, have not only obtained large quad-
rupole moments but also have not thereby sacrificed agreement with the other experi-
mentally observed features of nearly spherical nuclei14’ 22. Other aspects of the
model worth noting are that it bridges the gap between microscopic and macroscopié
models, that the macroscopic elements of the calculations are generalized and,
finally, that no approximations of small or uncoupled oscillations in g and Y are
assumed. The authors obtain wave functions and nuclear potentials which, if correct,
will modify our concepts of collective nuclei and of their equilibrium structures.

For these reasons, then, their theory has been of considerable interest of
late and thus far the results are encouraging. Numerical calculations to date have
centered chiefly in the Os-Pt region and in Chapter VI of this thesis the relevant
predictions are compared in detail with the experimental results on osmium. For
now, a brief outline of the model will suffice.

Kumar and Baranger begin with Bohr's complete collective Hamiltonian
except that they generalize it by replacing the three moments of inertia, the three
vibrational inertial parameters, B, and the potential energy by seven arbitrary
functions of 8 and Y. The generalized form resulting is

1

Hep =75 [11 (B:yw + L (B,y)w, + I, (B, ¥)w, ]

1 ;2 : ‘2
g [BBB(B,V)B +B7(B,7)B'>’+Byy(ﬁ,7)‘y] 11-60

B
+ V(B,7)
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They treat this not so much as a specific model Hamiltonian than as the most. general
form for H to second order in the velocities. This is related to a generalized
adiabatic assumption. )

Next, they calculate the seven functions from a microscopic pairing-plus-
quadrupole model. They do this by applying techniques related to the RPA approach
described earlier but couched more nearly in terms of a self-consistent time-depen-
dent Hartree-Fock analysis. The parameters entering into these calculations are
the single particle energies €, the proton and neutron pairing force strengths
Gp and Gn, the strength of the quadrupole force -x, an effective charge and an
additional constant reflecting contributions from the core nucleons. All these
parameters are determined empirically. The effective number of single particle
levels to be included is obtained by comparison of quadrupole force matrix elements
with those of " realistic' forces. The result is a reduction by a certain factor of
contributions from the second unfilled shell. In some of their earlier calculations
Kumar and Baranger-also evaluated Y itself by a similar general normalization of
quadrupole and''realistic' force matrix elements. When the several parameters
are determined no free variables are left and the theory proceeds unambiguously
to a prediction of the properties of the entire region 50 < Z < 82 and 82 < N < 126.

Once these seven functions are calculated the model calculations are reduced
to solving the Schrodinger equation with the Hamiltonian, HKB' Previous macro-
scopic treatments of the collective Hamiltonian have usually assumed, initially,
the separation of rotations, 8 and v vibrations. Rotation-vibration interactions
are sometimes approximately included later as perturbations. Among the reasons
for this common approximation are the extreme mathematical difficulties involved
in avoiding it. Kumar and Baranger, however, have overcome these and in fact
solve the problem exactly with no assumptions concerning separability. A computer
code involving a large 8-y mesh is used in which the seven functions are evaluated
at each point of the mesh.

The result of these calculations are wave functions, energy levels and static
and dynamic transition moments for the lowest seven states (all of spin J < 4). In
the osmium nuclei the theory correctly predicts the gradual trend from rotational

1 192
to spherical nuclear character as one proceeds from Os 86 toOs .
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The potential for Os186’ 188 corresponds to a deformed prolate shape. For

190, 192
Os '’ o a slightly asymmetric but very shallow well is indicated. In these latter
nuclei, in fact, zero point motion in the ground state is actually sufficient to enable
the nucleus to oscillate back and forth through many shapes. Large quadrupole

190, 192

moments result since even the more 'vibrational' nuclei, Os , oscillate

about a slightly deformed potential minimum but, as the authors point out13, other
properties, such as energy levels, can approximate the vibrational model since
the nucleus in its zero point motion spends much of its time near the spherical
shape.

In addition to predicting the finite quadrupole moments of 2+ states and the
transition toward the vibrational limit near Os192, the model has also proved
extremely successful in its predictions for the B(E2:0+-' 2+) values relevant to

+
the excitation of the first 2 states13’ 37, 58.

It is likewise nearly in accord with
experimental results on the g factors for these states13

One of the chief results of this thesis is a more thorough comparison, with
this model, of experimental results on the higher lying 2+, , 4 : and 0+' states.
In Chapter VI, some of the actual numerical results of Kumar and Baranger are
tabulated and a detailed discussion is presented of the comparisons of these with

our experimental measurements.
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C. Coulomb Excitation Theory

The nuclear excitations observed in this work were produced by the time-
dependent electromagnetic interaction of the incident projectiles with the target
nucleus in the process known as Coulomb excitation. This excitation mechanism was
adopted because, on the scale of energies indicated here, the electromagnetic
interaction is well understood59 and can be handled conveniently mathematically.

It has the advantage that the incident projectiles, with energies well below the
Coulomb barrier, never actually penetrate the nucleus itself. Thus the analysis

of the data is nearly free of uncertainties due to our lack of detailed knowledge of .
the forces abounding within the nuclear confines.

There are three principal approaches to the analysis of the excitation
mechanism and each will be discussed below. First, it is approrpriate to note
that the excitation cross sections may be calculated either semi-classically or in
a full quantum mechanical manner. In the former the electromagnetic interaction
is treated quantum mechanically as that between two poin t charges but the projectile
is assumed to follow the classical hyperbolic Rutherford orbit. ‘The rigorous
quantum mechanical treatment describes the particles by Coulomb wave functions
and employs a Hamiltonian consisting of four terms: ones for the projectile, the
target nucleus, the radiation field and for the point charge interaction. One
solves the problem by expanding the vector potential A in multipole components and
taking matrix elements between initial and final states of the system. The excitation
occurs via the exchange of virtual photons. A fuller discussion of these points and
a derivation of the quantum mechanical results is found in reference 60, hereafter
often referred to as ABHMW.

The strength of the Coulomb interaction is characterized by the Sommerfeld

parameter 7 given by:
Z,Zge°
n = Ay

where Zl’ zZ o are the charges of the projectile and target nucleus, respectively,

and v is the velocity of the incident projectile. If 1>>1 the interaction can be

described by the semi -classical approach in which a classical trajectory is assumed
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and in which the energy loss of the pfojectile due to the excitation is small compared
to its incident energy. In all cases considered in this thesis, n>>1 (typically
n=40), and so we need not consider the quantum mechanical case further.

Under the assumption that the Rutherford orbit for the projectile is unper-
turbed by the excitation induced, the differential cross section for excitation of

level f in the target nucleus is60

dcrf = Pfch. II-61
Ineq. 61, do_ = %az sin_4(9/2) d2, the Rutherford cross section for scattering

R
. . 2 2
into solid angle dQ at the asymptotic scattering angle 6, and a = (Z1Z2e )/(mov )

is one half the distance of closest approach. P_ is the probability that level f was

f
‘excited in the collision. By summing over final and averaging over initial magnetic
substates Pf may be written in terms of the amplitudes bi £ for a transition from

initial state i to final state f:

_ 1 Z 2
b= 29, +1 lbifl . I1-62
M. M
f
Thus the evaluation of the Coulomb excitation cross section in any situation is
reduced to evaluation of the amplitudes bi £
We can write the Schrodinger equation for the actual nuclear wave functions

61
as

inY = [HO+HE (t)] )
where Ho is the Hamiltonian for the free nucleus and HE (t) is that for the electro-

magnetic interaction. HE (t) is obtained by expanding the Coulomb interaction

potential
_ -Zl e Z1 e
o, t) =T-——=" II-64
Ir rproj (t) I ITproj ®)
. . . 60
in multipole components and is given by ,

4m Z, e Y | *
HL (1) = Z e T T Yw[e(t),(p(t)]M (EX, p). II-65
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In eq. 65, 6 (t), ¢ (t) specify the time dependence of the angular position of the

incident projectile and M is the nuclear multipole moment given by
M@EMN u) = J'er)\u(e, ©) p (T) dT, II-66

p (T)being the nuclear charge density.
Now, expanding { in terms of the wave functions gbs (satisfying 'Hocps = Esd)s)

of the free nucleus we have

) HE t/h
) —Z a )y e s 11-67
S

Then, substituting eq. 67 into eq. 63, we get

. 1
A (1) =5 ) <flIH ()] s> exp_[i (E;- E) t/h] a(t) 1-68

S

The labels f and s here refer to all relevant quantum numbers.
If we seek the probability for excitation of state f from an initially unpolarized
ground state, the amplitudes a (t) (explicitly labeling for a moment the magnetic

substates) are the same as the quantities bi and so one simply has to solve eqs. 68

f
for them, and substitute the results into eqs. 62 and 61. Unfortunately, the

different amplitudes a 1 8T interrelated through eqs. 68 by a (possibly infinite)

set of coupled differenftial equations and their solution, even for a few _nuclear
states, requires considerable use of modern high speed digital computers. Only
recently have the appropriate computers and the complicated computer code61 for
the solution of eqs. 68 been available. We shall return to this approach later.

Let us consider now, though, the case in which the probability of excitation
is very small. If a; is the amplitude for the ground state component of ¥, then
|ai|2al and |‘aj ‘2 <<1 for i #j. In this case the sum in eq. 68 reduces to one

term and we have the usual first order perturbation theory result:

wt

1 +o ] i
a = <3 f_m<f|HE(t)|1>e dt 11- 69

where w = (E . Ei)/h. Substituting HE(t) from eq. 65, changing coordinates to the
focal system of the hyperbolic orbit, and regrouping terms in eq. 69, one is able

to separate the nuclear information and the orbital information. The latter, for
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the fully known Rutherford orbit, is completely calculable. One thus obtains60

8, = b .= — Z 5351 SEru <f|M(EXp)li> I-70

Au

where the SE . are orbital integrals defined and evaluated in ABHMW. The

cross section for electric excitation of state f is given by eq. 61 using eqs. 62 and 70:

Zie \2

_ -2)2+2
dcf(EA)— ( hv a

B(EX Ji—.Jf)de)\(e’ £). II-71

de>‘ (8, &) is defined in ABHMW and is closely related to the orbital integrals
SEA u The so-called adiabaticity parameter £ = (aAE)/(hv) = (Z1Z2e2A E)/(hv 2E)
where E is the projectile energy and AE the excitation energy of the final state

in the target nucleus. The important quantity B(E)\:Ji =J f) is defined by:

-1 <3 I MEN) | 3>|? e

BEX: J, ~ Jp) 23 +1

in terms of the reduced matrix elements for an electric transition of multipole
order EX. ‘There has been some confusion in the literature relating to the use of
B(E2) values for excitation and deexcitation. If Ji in eq. 72 is always taken as
the initial state no ambiguity should arise. Equating dof (E2), as given by eq. 71,
to the experimental cross section allows one to solve for the only unknown, the
nuclear quadrupole transition matrix element (or, equivalently, the B(E2: Ji-* J f)
value).

Although the use of perturbation theory is limited to low excitation proba-
bilities it is revealing to look at the behaviour of do (EX) as a function of several
parameters. Some physical insight may be gained by noting that £ = (a/v)/(»/AE)
is approximately the ratio of collision time to nuclear period and thus is a measure
of the adiabaticity of the collision process. If £ is large the nucleus has time to
adjust adiabatically to the incident projectile and excitation is unlikely. On the
other hand, if £ is small, the ' sudden approximation'' applies and excitation
probabilities can be large. Thus it is not surprising that the functions deAor

fE)\ (integral of df ,, over all angles) decrease exponentially with £ for large

EX

£(€>4). This is illustrated in Fig. II-1 which gives fE)\ for several values of A.
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Immediately, then, we see two important features of the Coulomb excitation
process. The excitation probabilities are greatly enhanced by increased projectile
energy and decrease rapidly as nuclear excitation energy is increased. (In practice,
a common upper limit for excitation is usually about 1.5 MeV). The former feature
is further strengthened because higher projectile energies in addition imply closer
distances of approach and consequently greater interaction strengths. (For E2
transitions, for example, do/df « E). We note next that, for a given value of £,
the excitation cross section is proportional to le (Al/ Z1)2>‘/ 3 which, for X =2,
is le (Al/ Z1)4’/3 Thus excitation cross sections increase with the mass and
charge of the projectile -and the advantages often obtained by using heavy ions become

4 16’ S3

obvious. For projectiles with the same Zl/Al (e.g., He , O 2) acceleration

to energies proportional to Z. results in excitation cross sections proportional to

1
2
Z. . Finally, the cross section in first order perturbation theory is proportional

tol the square of a nuclear matrix element. This explains the preferential Coulomb
excitation of collectively enhanced levels which is one of the most striking and
useful features of this excitation mechanism., A

Since E2 transitions so predominate in the osmium nuclei over other multi-
polarities we now limit ourselves to their consideration. Many states (e. g., 4+,
0+ levels) cannot be reached, however, by direct E2 transitions from the ground
state. To calculate the excitation probabilities for these one may resort to higher
order perturbation theory. The general features of the Coulomb excitation process
(dependence on excitation and projectile energies, on projectile mass and charge,
and dependence on and proportionality to nuclear matrix elements) remain and are
generally enhanced. Thus in second order perturbation theory, for small §, doE 9
is approximately proportional to E4. In fact, the higher the order of the excitation
required to reach a state the stronger is the energy dependence of the cross section.
This is indeed, in principal, a means of establishing or confirming the spins of
certain states if their excitation is observed at several different bombarding
energies.

The excitation of 2+ states other than the first excited state may also be

‘ +
achieved through double E2 excitation via the first 2 state. Thus the cross section

for such an excitation is
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(1) (2) (1,2)
do'2+l = do'2+* + do-2+/ + d02‘+/ II-73

,2)

/ represents the interference between the first and second order cross

) (@)

where do

sections, do" ' and do Expressions for do(z) and dca’ 2) are given in ABHMW
and their evaluation is facilitated using tabulations performed by Douglas62

Consider now the case in which the excitation probability is large. Then
the entire perturbation expansion is questionable. In this situation a final level
is often attained only after multiple transitions through many states via repeated
emission and absorption of virtual photons. Consequently, the excitation probability
is no longer simply related to the nuclear matrix elements and the extraction of
the latter becomes more difficult. In order to calculate the cross sections one
must somehow have knowledge of all the matrix elements connecting all states
involved in the excitations. Two recourses are possible.

First, one may fall back upon a nuclear model which expresses many
nuclear matrix elements in terms of one or two or in terms of other known para-
meters. The cross sections may then be calculated but, of course, one can no
longer extract matrix elements from the results. This approach is useful, however,
in determining the extent to which the nucleus is structured according to the model
used.

The second recourse isto fit the experimental data by varying a full set
of matrix elements until theoretical and experimental excitation probabilities
agree as a function of projectile energy. The computational difficulties involved
in this approach (namely, solving a coupled set of differential equations of the form
of eqgs. 68) have recently been overcome61. This method of attack is described in
detail after some further comments on the model-dependent approach.

There have been several of these model dependent " multiple Coulomb

63-65 Most arebased on the

excitation'' theories developed in recent years
rotational model. Alder and Winther63 have, for example, considered the excitation
of the members of a pure rotational band. In their analysis the perturbation
expansion is avoided in the sudden approximation (£ = 0 for all states) which neglects
the energy differences between band members. Actually, these authors expand
their solution in a power series in £ and calculate and tabulate the first order

correction term also.
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More specifically, using rotational model wave functions they express the
excitation probabilities P 3 (q) for the various band members as a function of the

parameter g, defined by:

2 2
q= %on— ="\ /—% [ PO(_.92= 1800)] g 1-74
where QO is the intrinsic quadrupole momgnt of the band and P0—° 2 is the first
order perturbation theory excitation probability for the first 2+ state. Typical
values of q in -these experiments were somewhat less than 2. 0,

Since large errors due to finite £ can result even after first order correction
terms in £ are added to the excitation probabilities, Alder and co-workers64 have
'modiﬁed their theory so as to calculate directly the excitation probabilities, P J(q, £),
for finite (even large) £. The technique used is a diagonalization procedure involving
the five lowest band members. The results are tabulated in reference 64.

In these multiple Coulomb excitation theories an approximation often used
is the so-called p= 0 approximation in which all initial, final and intermediate
levels are populated only in their M = 0 substates. For zero-spin projectile and
target this occurs rigorously for projectiles scattered through 180° 66. For angles
close to 180° (usually for 6> 1550) the approximation is quite accurate. In the
present experiments, the minimum angle was ecm = 158° and for this angle the
errors involved in using the = 0 approximation are less than 5%. However, the
effective errors are much less since the experimental and theoretical cross
sections are weighted averages over many scattering angles. Thus the contributions,
in the theoretical integrals of the cross sections, from those (smaller) angles forl
which errors are greater than 3%, are a small fraction of the total. Overall
errors thus resulting from the p = 0 approximation are always less than 3%, and
generally considerably under this limit.

The u = 0 approximation, however, far surpasses, in its usefulness, its
calculational convenience in this model-dependent theory. Since it corresponds,
not to a feature of the model, but to the actual physical absence of non-zero

magnetic substate excitations, it is valuable in almost all Coulomb excitation

61
calculations. In particular, in the model-independent Winther and de Boer
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computer code (see below) it can result in reduction of computer costs by factors
of 3-5, Furthei‘more, in this approximation the angular distributions of the deexci-
tation gamma rays become independent of excitation mechanism56 and hence of the
route by which the final state is reached. This in turn results in two related advan-
tages, one of convenience and one more fundamental. The convenience is that one
now does not need to apply a different angular distribution correction to the experi-
mental numbers for each proposed set of matrix elements (i. e., of excitation routes
and probabilities). The more fundamental advantage occurs with states for which
two prominent excitation routes are possible (e. g. , 2+' states). The matrix
elements for the two routes may be unambiguously assigned, in this approximation,
if the absolute excitation probability of the state and its deexcitation branching
ratio are known. If, on the other hand, the angular distribution were a strong
function of excitation route, then two experimental numbers would not be sufficient
to fully determine the excitation process, and unambiguous matrix elements would
not be obtainable. As in the model-dependent calculations, the overall errors
involved in using the p = 0 approximation in the Winther and de Boer program are
always less than 3% and, except for the excitation of 6+ and 4+'states, closer to
1% (See Table VI-9). Furthermore, of course, the direction of the error is known .
and consequently a partial correction can be made, reducing the error even further.

Returning for a moment to the model-dependent calculations, we note one
important characteristic. The relative excitation probabilities for the different
band members oscillate as a function of q, and hence as a function or projectile
energy (q «< E3/ 2). Fig. II-2 illustrates this for the ground state band. The
oscillations are seen to occur for values of q greater than about 2. 0 and so were
not observable in the present experiments. However, if a sulfur beam of energies
from 100-150 MeV were used, the range of q covered would be 1. 7<q<3.2. In
this case the relative 2+ state excitation probability would be seen to '"turn over"
relative to the 4+ state excitation. This oscillatory feature can be used to further
test the degree to which the nucleus obeys the rotational model, especially for the
higher-lying band members.

So far we have considered only the multiple excitation of the ground state

band. Lutken and Winther65, however, have dealt with the excitation of excited
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vibrational bands. Assuming the rotational model and taking the band members

as degenerate (i.e., £ = 0 within a band but not between bands) these authors show
that the excitation probability for a given state in the final band can be written as
the first order perturbation theory excitation probability to the first 2+ state of

the band times a factor B?};‘Il( (q(6) ) which effectively redistributes the population
of the band among the various states. q(f) is definled in a manner similar to eq. 74
except that PO(—% replaces PO(LSZOO). In the W= 0 approximation, B ;\f I‘é (q(8)) is

independent of u and so, for large scattering angles, a good approximation is:

['x'2 (8, F,’)] 2 | Bﬁ @ (e))|2 1-75

T a<

where x (6, £)=q (8 )/1.6771. For the K = 2 bands populated in these studies

_ 2 2
dchf = dozyl BJf2 (q(9))' II-76

where d 02+§" is the first order perturbation theory cross section for the excitation
O+ (E2) 2+/ . Because of the structure of eq. 76 one can extract the nuclear
quantity B(E2:O+ - 2+' ) from the calculations using the model. The quantities
B(q( 6 )) aregiven in reference 65 and, for a K = 2 band, are illustrated in

Fig. I-3. This figure, like Fig. II-2, shows that the excitation probabilities for
various final states have different energy dependencies, the excitation of the more
circuitously populated states generally requiring higher energy projectiles. Thus
another features of these model-dependent calculations is that they provide a means
of testing for the spins of states suspected of being members of a rotational band.
(Often these states are only weakly excited and a full measurement of the angular
distribution of the deexcitation gamma rays is an impractical means of establishing
the spin).

Further details on these calculations are provided in references 63-65, 25,
and 27 where definitions of terms, derivations, and tabulations of useful functions
are provided in greater abundance than here.

The model-dependent approaches, by their very nature, need to assume most
of the matrix elements required in the calculations and therefore do not provide
them as output. A method of analysis that does not suffer from this disadvantage

will now be described.
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We recall that the most exact and rigorous way of calculating the Coulomb
excitation cross sections is to solve the coupled equations (eqs. 68) for the time-
dependent é'xcitation amplitudes. In principle this set of equations is infinite but
in practice many states are not involved in the excitation mechanism and may be
neglected. The numerical solution of eqs. 68 has recently been rendered conveniently
feasible by the use of a computer code developed by A. Winther and J. de Boerﬁl.
(A similar computer calculations has been developed by 1. Berson67). The Winther
and de Boer code solves up to ten coupled equations of the form of eqs. 68 (with
up to 90 magnetic substates involved) for the excitation amplitudes af and from
these calculates Coulomb excitation probabilities and cross sections. The calcu-
lations are done in the semi-classical approximation but include symmetrization
of the classical orbits (see belo;N) and are limited to E2 excitation processes.

After a change of variables from t to w, defined by

t = a/v(esinhw+ w) I1-77

where ¢ =1/sin (8/2), the integration of the transformed eqs. 68 is initiated by
use of the Runge—Kutt:a-Gill68 procedure. The results of this are the amplitudes
and derivatives of all theaf at the initial point in the orbit and at three successive
consecutive points. These numbers then form the basis for the use of the more
efficient Adams-Moulton predictor-corrector formulas69 which obtain t\he values
of the af at all successive steps in the projectile orbit. The code provides an .
accuracy control which determines the range of integration and the degree to

which the sum of all excitation probabilities, EEI: Pi’ is allowed to deviate

from unity. The program prints out results for theofinal excitation probabilities,
laboratory and center of mass cross sections and also for coefficients used in
the calculation of the angular distributions of the deexcitation gamma rays. The
user can select the number of substates to be included in the calculations. For
use in the analysis of the experiments performed he_re the program has been
abbreviated and modified so as to form a subprograrh in a code which performs
thick target integrations of the theoretical cross sections. This modification is

discussed in Section V-E and in Appendix II, where a listing is also given.

Before closing this chapter one general comment is appropriate. In all
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the above discussions the energy loss of the projectile in the collision is neglected
(recall the use of only a single, asymptotic, v). This is consistent with the semi-
classical approximation. Without complicating matters, however, a significant
improvement in these calculations (whether of the perturbation theory, model-

. 6l -
dependent or independent types) may be obtained by " symmetrization' . This is
done by replacing £ = (lezez)/h v by

2
Z7Z_e
£ 12 (1 1 . I1-78
sym h Ve Vg
This symmetrization procedure has been incorporated into all analyses performed

in this study.
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III. EXPERIMENTAL CONSIDERATIONS

A. Methods of Measurement

In order to investigate the nuclear structure of the osmium isotopes several
types of experiments were performed although all used Coulomb excitation as the
basic tool. After a brief outline in this section of the various species of measure-
ment, the rest of this chapter will concern itself with a description of the exper-
imental apparatus used.

There were three principal modes of experimental determination of nuclear
information employed in these studies. In each, measurement of gamma (hereafter
v) ray spectra was the central feature. Such spectra were recorded:

1) singly in both NaI(Tl) scintillation crystals and Ge(Li) solid state
detectors. (These measurements are henceforth referred to as '"y-singles" or
"direct" spectra. ),

2) in coincidence with h y-rays representing specific nuclear tran-
sitions in the isotopes studied (hereafter called "y-y' measurements), !

3) in coincidence with particles of the incident beam backscattered
from the target nuclei into an annular particle detector (hereafter "y-particle"
measurements).

The second approach is extrémely useful for analysis of complex decay
schemes and was used primarily for that purpose. Additionally, though, it revealed
certain transitions that were masked in the direct and y-particle coincidence spectra
by other, stronger, y-ray transitions degenerate with them.

The first approach is useful for obtaining branching ratios and, in the case
of the Ge(Li) detector, provides y-ray resolution far surpassing that obtainable with
the Nal(Tl) crystals. Thus it also serves a valuable function in elqcidating the
existence and nature of composite peaks in the other y-ray spectra.

The third method has proved by far the most valuable and has been the
source of most of the quantitative results obtained. In prihcipal, any of the three
methods can be used to extract -absol ute nuclear transition probabilities. However,

for the following reasons ,the y-particle coincidence measurements proved the

most fruitful source of such information.
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1) Gaps in the response of the particle detector on a millisecond
time scale due to bias reduction caused by electrons emitted from thé bombarded
target introduced an additional source of error of about 10% into the other methods
that was avoidable in the y-particle experiments.

2) Thick target data analysis is complicated in methods (1) and (2)
by the fact that integrations, over all angles and over all energies E<E Oli% 2 of
theoretical yields must be performed. The energy integration is merely an incon-
venience but the angular one involves the foregoing of the p = 0 approximation (see
Section II-C). In method (3) the angular integration is eliminated (one mean scat-
tering angle is an excellent approximation) and a relatively high cutoff on the energy
integrations is possible (see below). Data analysis is thereby rendered easier,
more accurate and less expensive as well,

3) Perhaps the principal disadvantage of methods (1) and (2) is that
the relative population of certain states reached by high order excitation mechanisms
is reduced relative to their population in method (3) in which y-rays are recorded
in coincidence with backscattered particles whose hyperbolic Rutherford orbits
corresponded to closer distances of approach to the nuclear surface and conse-
quently to greater interaction strengths. Thus method (3) is invaluable in studying
many high-lying, weakly-excited states.

4) Ambient and nuclear-reaction-induced backgrounds of y-rays are
relatively considerably higher in methods (1) and (2) than in method (3). Again,
weakly excited states are thus more easily observable with the latter technique.

Measurements of y-ray spectra in coincidence with the 2+—' 0+ and 4+—' 2+
transitions were separately recorded, at an incident O16 energy of 70.30 MeV, on
08186’ 188, 190, 192. It should be noted that, due to a near-degeneracy of the
4+-‘ 2+ and 2+‘ - 2+ y-ray transitions in 08190’ one of the ¥-¥ coincidence spectra
obtained from this nucleus actually consisted of coincidences with both of these
transitions, not solely the 4+-' 2+ deexcitations.

Direct and y-particle coincidence spectra were taken on some or all of the
nuclei, on either (or both, in some cases) thick or thin targets at the following
incident O16 laboratory energies (in MeV): 42, 00, 48.26, 62.10, 70.30, 80. 00.

In these measurements the y-ray counters were placed about 6.5 cm. from the
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target and at 55O to the beam direction. The latter condition served to reduce the
effects of anisotropies in the Y-ray angular distributions since it corresponds to
the zero of the Legendre polynomial, Pz(cos 9';). (See Section V-A.) The particle
detector position varied somewhat from run to run but always subtended, at the
target, approximately 140 in the laboratory within the angular range 1560—1750.
It was typically about 2.5 cm. from the target.

In the y-particle runs, ¥ radiation due to nuclear reactions was eliminated
by designating a cutoff energy, Emin’ on the backscattered particles and by demand-
ing that the recorded y-rays be in coincidence with particles above that cutoff energy.
This eliminates coincidences with lighter particles such as protons or alpha particles
emitted in cofnpound nuclear decay since they are generally of relatively low energy
and, at any rate, can only deposit energies E< Emin in the detector. It also elim-
inates coincidences with O16 ions backscattered from light target cont aminants since
these too have lower energy. Fig. III-1123 illustrates a particle spectrum resulting
from the bombardment ofa thick samarium target with 49 MeV O16 ions and shows
the use of the cutoff energy to discriminate against products stemming from the
reaction of the O16 ions with a light target contaminant such as aluminum.

In addition to the above measurements, angular distributions of the deexci-
tation gamma radiation from the stronger transitions have been recorded in both

188, 192 ot incident 0'° energies of 48. 26

-singles and y-particle modes on Os
and 70. 30 MeV and on Os186 at an incident energy of 70.30 MeV. Measurements
at three angles, to the incident beam, 00, 55° and 900, were performed and the
results have been compared with theoretical distributions. (See Chapter V)

Further details of the experimental apparatus are contained in the succeeding

sections of this chapter.
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B. Accelerator

The beams used in the experiments described herein were provided by the
"Emperor'' MP Tandem Van de Graaff accelerator at the A. W. Wright Nuclear
Structure Laboratory of Yale University. The accelerator is, in many respects,
a standard tandem Van de Graaf with positively charged central terminal and
negative ion injection with the higher energy end at ground potential. However,
obtainable voltages exceed 11 MeV on the central terminal and proton beams of
over 5 pua on target have been obtained at energies exceeding 22 MeV. Oxygen
beams used in these experiments were obtained with ene rgies up to 80 MeV.

(Previous Coulomb excitation studies on the osmium isotopes'7 L have generally
been limited to O16 projectile energies of less than 49 MeV. As can be seen in the
data presented herein (see Chapter IV), at such energies only the lowest three
excited states are observed. The higher 016 energy available here has enabled

us to excite about twice as many states with sufficient frequency to be able to extract
B(E2) values for their excitation and thus to considerably extend the knowledge of
absolute transition probabilities in the transitional osmium nuclei. )

The continuously variable projectile energy is stabilized via feedback to the
corona points of an electrical signal from the image slits of the 90° analyzing
magnet. Using an NMR probe associated with that magnet one is able to obtain
momentum analyzed beams stable injenergy to less than one part in 104. At the
time of this writing, proton, deuteron, alpha particle, He3, carbon, oxygen, sulfur,
argon, and iodine beams have been accelerated successfully. The main features of
the installation are schematically shown in Fig. III-2. Below, some additional
aspects of the accelerator are briefly discussed.

There are two ion sources: a duoplasmatron and a diode ion source. The
latter has been used (in related experiments) to accelerate S32 ions obtained from

a gas mixture containing H_S. The former supplied the oxygen ions for these

2
measurements. The O16 is introduced into this source in the form of a mixture of
COZ and H2 and is ionized in a high density plasma discharge initiated by electrons
emitted from a heated filament and subsequently spiralled in a magnetic field. These

016 ions pass through a charge exchange canal and those that emerge in the 1
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charge state are magnetically selected, focussed, and injected into the main
acceleration tube. Because of the O16 in the initial gas mixture, filament life

is limited and a conipromise must be struck between filament life and beam current
requirements. A 2% (approximately) mixture of 002 in H o Was found to be a suitable
one.

Inside the accelerator proper the negative ions are attracted toward the
central terminal, at which point they pass throug}:_a "stripper'' gas rendering them
positively charged. The ions are then repelled from the central terminal, emerge
from the higher energy end of the '"tank'" and are electrostatically steered and
magnetically focussed. An analyzing magnet bends those ions in the selected charge
state through 90° and precisely defines their energy. The beam is then focussed
once more, bent into the appropriate experimental ''leg" by a ''switching" magnet,
magnetically focussed twice more and finally allowed to enter the region of the
scattering chamber.

The O16 ions used in these experiments varied in energy from 42-80 MeV
and in charge state from 5+ to 7+. Terminal voltages ranged from 7-10 Mv. Beam
currents were purposely kept low to avoid overloading particle and Y-ray counters
and generally were in the 10-20 na region although on occasion several hundred
nanoamperes were recorded on target. The beam spot on target was defined, by
collimating slits, to slightly better than 1 mm. by 1l mm. With the rectangular slits
set at . 015" on each side, however, very little beam actually struck the slits.

One final feature of the installation is the use of commercially-obtained
Ultec ion pumps on all beam legs instead of oil diffusion pumps. This results in
very little contamination of system and targets from condensation of pump oil vapors.
Typical pressures throughout the system were in the 10—'7 to 10—6 mm. Hg range.

The accelerator functioned reliably during these experiments and data
acquisition rates were very satisfying. A typical y-backscattered particle coin-
cidence experiment yielding 2-3 x 105 counts in the largest y-ray peak and
20-40 x 103 counts in other main peaks required only 2.5 to 5 hours. Filament life-
time in the ion source varied from 15 to 30 hours and thus several coincidence spectra
could easily be procured in consecutive runs under identical experimental conditions.
Through advantageous, such a circumstance was not actually a necessity due to the

excellent reproducibility of beam conditions, and thus of data, over a span of many months.
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C. Scattering Chamber
and Particle and Gamma Ray Detection Apparatus

The target chamber and associated apparatus are illustrated in Fig. III-3.
A final quadrupole focusing magnet (not indicated in the figure) served to bring the
beam to a focus at the target located about 8' away. Inserted between the quadrupole
and the target chamber was a slit system consisting of two rectangular Ta slits the
size of which was continuously and independently variable via sets of four micrometer
depth gauges. The first slit was the beam defining collimator. The second, or
antiscattering slit, was about 2' closer to th:e target and generally set . 005" wider
in each dimension than the first. To prevent radiation from the slits from entering
the y-ray detectors a wall of machined lead bricks, fitted around a narrowed section
of beam tube, was placed between the slits and the detectors. .

Two very similar scattering chambers were employed in these measurements.
In each one the target under bombardment was suspended from the top flange while
the lower flange contained the support and alignment assembly for the annular
surface barrier detector used to record particles backscattered from the target.
This flange was itself supported by a slotted stainless steel rod which slipped into
a cylindrical hole and keyway in the main aluminum support table.

The two chambers differed only in the basic cylindrical body. (The same
top and bottom flanges fit into each body.) The only difference between them is that
one (illustrated in Fig. III-3) was used with thin targets and so had a flared outlet
through which the unscattered incident beam could pass into an insulated Faraday
cup. The other ché.mber, used with thick targets, needed no such outlet. With
this latter chamber ¢¥-ray detection at 0° was feasible. Beam integration with
this chamber, though not necessary, could be easily (albeit crudely, in an absolute
sense) achie ved since the targets were electrically insulated, with teflon spacers,
from the rest of the chamber,

The scattering chamber and support table were so designed that replacement
of one chamber with the other required only a few moments and no realignment
of targets or detectors. The vertical positioning of the entire chamber was obtained

by a screw adjustment on the vertical support rod for the bottom flange. The
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particle detector itself was mounted in a sliding assembly on the lower flange and
could be continuously moved in all directions, -although not from outside the chamber.
Thus one could select specific backscattering angles and solid angles with consid-
erable freedom. The particle detector could also be positioned (roughly) at any
desiréd forward angle by rotating the lower flange relative to the beam direction.
The annular surface barrier detectors used were supplied by ORTEC and had

central holes of 4 and 5 mm. diameter with sensitive regions extending from about

3 to 8.5 mm. in the radial direction. They were generally biased at 50 volts and
drew from 0, 2 to 3. 0 pa reverse current (through 2 MQ2) depending on the prior
duration of their exposure to the scattered beam.

Up to four targets, suspended from the top flange, could be moved into
position in front of the beam from outside the chamber, in the standard configuration,
by the vertical moviement of a notched stainless steel rod. This rod was actually
continuously positionable, and in addition, was provided with a fine adjustment
screw, so that any position of any target could be exposed to the beam and so that,
by using non-standard clamps, more than four targets could be inserted at once.
This latter feature often proved valuable when one wished to bombard not only all
four Os targets in turn but a gold target for calibration purposes as well.

The vy-ray detectors were 3 x 3 in. thallium activated Nal scintillation
detectors mounted in protective graded Pb, Cu and Sn shielding and supported in
"Y" shaped vertically positionable aluminum holders. A top view of the apparatus,
shown in Fig. II1-4, shows these detectors in place. The detector assemblies could
be placed at distances from the target varying from about 2.5 inches to about 2 feet
and could be concentrically rotated to any desired angle (except extreme backward,
and, in the case of the thin target chamber, extreme forward angles) as marked on
an inscribed angle circle fastened to the main aluminum table. These scintillation
counters were optically coupled to Dumont 6363 photomultipliers and yielded about
9% energy resolution.

In additiona 7.7 cm3 planar lithium drifted Ge :y—ray detector and Dewar
assembly was mounted on the table and could be manually rotated to most angles.
In certain direct spectra taken with this counter, maximization of counting rate

was of primary importance and, for such purposes, an extension piece was made
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with which the targets could be placed within an inch of the Ge detector face.

Resolution with this detector was about 6 kev on the Na22 511 kev y-radiation.

47
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D. Targets

The targets required in a Coulomb excitation experiment on heavy nuclei
should be as free as possible from contaminants. For low Z nuclei the incident
beam is well over the Coulomb barrier and profuse quantities of %y-rays, protons,
neutrons and alpha particles are produced from nuclear reactions .involving the
decay of highly excited compound systems. Thus one must contend with high back-
ground radiation which reduces peak-to-valley ratios in the %-ray spectra. Such
radiation also tends to flood the detectors, forcing one to reduced beam intensities,
hence higher relative ambient backgrounds and lower data acquisition rates. High
Z contaminants are also undesirable since they are themselves Coulomb excited
and such effects must be disentangled from the Coulomb excitation of the target
proper.

For these reasons one would like to use clean, thin or thick, self-supporting,
isotopically enriched targets. In the case of osmium such targets are extremely
difficult to produce70. Prior to this work, the only evaporated thin Os targets
produced were fabricated by; J. de Boer et al. 70 However, these were <1 l.zg/cm2
thick, were not self-supporting, and were only marginally usable for Coulomb
excitation of the lowest lying, most frequently excited, states. Data acquisition
rates were exceedingly low in coincidence measurements and, since surface-to-
volume ratios were high, contaminant background radiation was a serious factor.
Thicker Os targets have been produced in a sintering process by McGowan and

Stelsonﬂ’ 91.

These, however, were not isotopically enriched and disentanglement
of composite peaks made data analysis difficult. It is partially because of these
target problems that B(E2) values for the osmium nuclei were only known for the
excitation of the first three states and, even then, with quoted errors of 30-40% and
frequent disagreement among different observers of factors of 2—470’ 71.

A considerable effort was therefore expended on the production of more
satisfactory targets. Fortunately, these efforts proved quite successful and extre-
mely clean thick and thin self-supporting isotopically enriched—targets have been
fabricated. The thick targets are made by a process somewhat similar to the

sintering technique of McGowan and Stelson71. The thin targets are made via
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evaporation of osmium powder onto a glass substrate with subsequent floatation and
recovery of the thin films in the form of self-supporting targets. The procedures
for making these targets, as well as a discussion of certain problems inherent in
the production of osmium foils, are discussed in detail.in Appendix 1.

Suffice it to say here that the targets have proved very satisfactory. Conse-
quently data acquisition rates were high and data analysis considerably facilitated.
The very weak 6+ and 4+' states are observed even in the ¥-¥ coincidence data, for
example. Most of the data has, in practice, been taken on the thick targets since
they proved the cleaner, easier to fabricate and less expensive of the two types and
resulted in higher counting rates as well. The specific type of target used in each
run is labelled on the relevant spectrum in the next chapter by the words ''thick"
or "thin". These two descriptions designate thicknesses of . 0029 + .0002" and
500-1000 ug/cmz, respectively.
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E. Electronics

The electronics consists principally of a standard fast-slow coincidence
system with variable logic options. The details given below may be complemented
by the discussion of a similar system in reference 25. The description here cor -
responds mainly to the y-particle mode of operation. The ¥-% mode is very similar
except that the particle signals are replaced by ¥-ray pulses from a second NaI(Tl)
detector. The Y-singles mode is nearly trivial and will not be dealt with further.

A block diagram of the electronics setup in the ¥-particle mode is presented in
Fig. 1I-5.

In essence, the electronics determines whether or not a detected particle
and y-ray were 'in time coincidence (resolving time = 40 ns) and, if so, allows the
linear y-ray pulse to be recorded in the memory of a multichannel analyzer (here-
after MCA). Additional requirements on the particle energy are also demanded.
Some specific details are considered now. .

For 'fast-side' timing purposes ¥-ray signalsfrom the NaI(T1l) detector were
taken from the anode of a DuMont 6363 photomultiplier tube to which the scintillation
(;rystal was optically coupled. These signals were successively amplified and 1-ma
limited several times and then passed through a 100 mv discriminator set so as to
just eliminate the noise pulses. The fast particle pulses from an ORTEC Model 260
time pickoff unit were fed directly into an identical discriminator unit. True and
accidental coincidences were then obtained (the latter by inserting a delay of = 100 ns)
and used to open linear gates on the "slow-side''. The coincidence resolving time of
about 40 ns- resulted in nearly 100% coincidence efficiency for all but the lowest energy
Y-rays. :I‘he linear signals, preamplified, amplified and passed through the opened
linear gates were then fed into the direct input of an MCA which in turn was also
"prompt-gated' by the true coincidence signal itself since the linear gates had been
opened by both true and accidental coincidences.

In addition, one wants (See Section III-A) to record only those ?%-particle
coincidences in which the backscattered particles were above a certain energy,

Emin' Consequently the linear particle signals were allowed to pass through a

single channel analyzer whose baseline was set to correspond to the desired energy
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deposited in the surface barrier particle detector. The output of this analyzer was
fed into the '"delayed gate' of the MCA.

Accidental coincidences were recorded on scaling circuits as the output
of a logic network which demanded a threefold coincidence among the signals from
the fast accidental coincidence unit, ?the particles above the cutoff energy and the
v-rays of energy in the same range as those recorded in the (calibrated) MCA.

Various quantities were scaled, including especially the total number of
particles backscattered with energies above the cutoff and the total number of back-
scattered particles above that cutoff in coincidence with ¥-rays.

As stated above, the Y-y mode of operation is similar except that the fast
coincidence demanded is that between two Yy-rays, one from each of two NaI(Tl)
detectors. The second set of y-ray pulses replaces logically, the particle pulses
in the y-particle mode. An additional slow coincidence requirement here is that
the ¥-rays recorded in the MCA must actually be in coincidence with y-rays from
the other detector which correspond to a specific transition in the target nucleus,
e.g., the 2+——0+ or 4+—>2+ deexcita:_tion transitions. This requirement is met by
passing the y-ray signals from the ''gating" detector through a single channel
analyzer window set on the desired photopeak. The output of this analyzer opens

a gate for the linear vy-ray signals.
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IV. DATA PRESENTATION AND DECAY SCHEMES

A. Orientation

In this chapter most of the data taken on the four even-even isotopes,

OS186, 188, 190, 192

, will be displayed and discussed. Each isotope will be consid-
“ered in turn and, along with the data presentation, partial decay schemes will be
shown. Despite the slight duplication resulting, it is convenient to display all four!
decay schemes in one figure in this introductory section. This will allow us to point
out here in more detail the unity and general systematics of the osmium region and
to better orient the reader to the discussions of the following sections.
In Fig. IV-1 are shown partial decay schemes for the four Os isotopes.
Except for the 3+ levels which are dotted and shown for continuity, all levels and
transitions seen in this figure have been observed in the experiments performed
here. In addition, several new transitions, not shown in the figure, have been
observed and are discussed in the appropriate sections of this chapter.
As can be seen, all four isotopes exhibit at least incipient rotational bands
based on the ground state and on the K = 2 y-vibrational state. The band structure

186, 188, 190

is actually quite well developed in Os and higher-lying members of

72, 73

these bands are known (In 08192’ however, the decay scheme of Fig.1V-1

72, 76

shows all known levels .) The transitional nature of the osmium isotopes is

clear from the decay schemes alone which indicate that, as one proceeds from

Os186 to 05192, one passes from a highly and permanently deformed nucleus, quite

closely approximated in many respects by the rotational model, to a nucleus, 08192’
which tends much more toward the vibrational limit but which still retains certain
definite vestiges of rotational structure.

More specifically and quantitatively, it will be noticed that the first excited

186 to Os192 indicating (recall eq. II-12)

state energies gradually increase from Os
that the moment of inertia, and hence the deformation, is gradually decreasing as

the spherical limit is approached. In the rotational model the ratio of energies, E 4.../ E2+,
in the ground state band, is 3. 33, while in the vibrational model the 4+ level is a

two phonon excitation at twice the energy of the one phonon first excited 2+ state.

In practice, in vibrational nuclei, E4+/E2+ = 2,2 and such a ratio can be obtained
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theoretically by considering degeneracy-breaking residual interact;ionsz2 (see
. 1
Section II-A). For Os 86 we have E4+/E2+ = 3.17, which is quite close to 3. 33,

192

while in Os ™, E4+/E += 2,82, which is much closer to the vibrational result.

Furthermore, as will 1)2e seen in Chapter VI, the branching ratio B(E2:2+' ——2+)/
B(E2:2+'——0+) determined in these experiments is 2. 67 in Os186 and 11. 76 in Os192.
The rotational model result is 1. 43 and the ratio is infinite in the vibrational model
(see eq. II-6). Once again the trend is confirmed.

It will be noted, however, that the transition is gradual and actually not
completed by Os192 whose structure, phenomenologically speaking, is probably a
complicated mixture of rotational and vibrational motions in a shallow potential
well. It is, in fact, for this reason of a gradual transition that the osmium region
is of interest. It offers a sensitive testing ground for the various nuclear models
which must seek to reproduce the experimental results. The low A end of the rare
earth region is typified by a much sharper transition region near the closed shell

corresponding to neutron number N= 8225’ 117.

A truly successful theory of nuclear
structure must be able to reproduce both these sharp and gradual transition regions
at the two ends of the rare earth island of collectivity.

(In order to avoid repetition of explanations and to systematize the data
presentation some general notes on the spectra that follow are collected here.

First, all the spectra shown below consist entirely of raw unaveraged data.
Subtraction of accidental coincidences and contaminant 4-rays amounts to no more

186
than a 3% correction except in the Y-y spectra and as noted next for Os . The

one exception to the above rule is in the y-particle coincidence spectra for Os186.
Due to the large percentages of several contaminants in the Os186 spectra the latter
actually give a misleading impression as to the nuclear information they contain.
Thus, in the Os186 spectra used for most of the quantitative analysis (namely, the
y-particle spectra), the contaminant ¥-rays have been removed. This can be done
quite unambiguously since the main contaminants are the other osmium isotopes
studied and data on them has been taken under identical experimental conditions.
This exception is indicated on the appropriate spectra.

Secondly, in all NaI(T1) spectra shown, the energies of those photopeaks

corresponding to transitions in the nucleus being studied are given in kev above
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the photopeak. It may be assumed by the reader that (except for the similarly
labelled 511 kev annihilation radiation peak) peaks without such labels are due to
contaminants, Compton edges, backscatter or sum peaks. Composite peaks due
predominantly to one transition are labelled with the energy of that transition. Those
roughly evenly split between two transitions are given two energy labels (see Oslgo
spectra). In Os186 the labels correspond to the spectra with contaminants subtracted.
In the Ge(Li) singles spectra, on the other hand, the energies of all significant
transitions are inserted above their respective photopeaks.

The Ge(Li) energies are obtained from calibrations performed with known
sources: accuracies are + 2 kev. The energy labels in the NaI(Tl) spectra are
based on these spectra and their associated calibrations, on the transition energies
found from the Ge(Li) data and on the results of previous decay studies on these
nuclei.

Thirdly, unless specifically indicated to the contrary, the mean angle of the
y-ray detector to the beam direction was 55° and the dgte‘ctor-target distance was
either 6.4 cm. (thick target runs) or 6.6 cm. (thin target runs). Fourthly, the
absorbers listed are only those specifically placed between target and detector and
do not include absorption in the target, target holders, chamber walls ‘at;d detector
mount and window. In the thick target runs the major absorbers were actually the
target and its mount and in the thin target runs a . 005" Ta sheet also lined the inside
chamber walls to prevent nuclear reactions. Fifthly, the particle detector in the
y-particle measurements always subtended, at the target, 12°-14° in the center of
mass between the angles 158. 6° and 176. 00. The ranges of angles specific to the
various runs differed occasionally by 2°-3° buf' this variation has negligible effect
(< 1%) on excitation probabilities (See Table VI-9).

Finally, it should be explained that all the ¥-particle and %-¥y coincidence
spectra taken are reproduced in the following pages. Only certain selected spectra,
however, of the singles data (taken with either NaI(T1) or Ge(Li) are shown. These
are intended to be either typical samples of the data taken on a given isotope or are
reproduced in order to illustrate a particular point. However, for each nucleus,

at least one Nal(Tl) and one Ge(Li) singles spectrum are included.)
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186

In terms of obtaining quantitative information, the spectra of Os186 are,
in practice, the most difficult to analyze. The reason is simply that separated

. 186
isotopes of Os are available only in enrichments of 61, 5%77. (See Table IV-1

188, 190, 192

for the percent isotopic content of each target.) Os each contribute

about 9% contamination and, consequently, the y-ray Spectra are heavily deluged
with spurious structure. If measurements under identical conditions are performed

188, 190, 192

on all four isotopes, the results from the data on Os can be used, in

conjunction with their known abundances in the Os186 targets, to remove the effects
. 1 o s
of these isotopes from the Os 86 spectra. This has been done in detail in all the

186
Os data used for quantitative analysis.

186
The properties of the decay scheme and certain branching ratios in Os

72-7
have been extensively studied by observation of the decay of Ir186 and Re186 5.
Many more levels, at higher energies, are known than were observed in these

. 78 7 .
experiments « (o, xn) reaction studies 0 have revealed some of the higher-
lying members of the ground state rotational band. The spins and parities of all
the low-lying states (see Fig. IV-2) have previously been determined by the above

3

decay studies, by work involving ¥-v¥ directional correlations7 1 and by general
energy level systematics in this reg‘ionlz. As noted below, our ¥-y and #y-particle
measurements also attest to these assignments. In addition, the measured y-ray
angular distributions (see Section V-A) in 0s186, as well as in 05188’ 192, provide
confirmatory evidence for the consistency of the spin and parity designations of the
2+, 4+, and 2+' levels and of the transitions involving these states.
| Due to the previous unavailability and present costly nature of enriched 08186
target material, very little Coulomb excitation work has been done on this nucleus.
Prior to this work, in fact, only the B(E2: q+~2+) value was known for this isotope
from such studiessz; also, the same B(E2)";fa1ue was known from lifetime measure-
ments. 83-86 Concurrently and independently of the work performed here, Milner
La.l.58 have, however, studied the three lowest-lying states in Os186 via Coulomb
excitation and have obtained results in good accord with those quoted here for these

16 .
states. Our work, however, featured bombardment at higher O = energies than




TABLE IV-1. ISOTOPIC CONTENT OF THE OSMIUM TARGETS BY PERCENT
Contributing
isotope
Target Os186 Os187 OS188 OS189 Os190 Os192
8
Osl 6 61.5 3.3 9.46 7.18 8.75 9.77
Os188 0.5 0.5 87.7 6.2 3.8 2.5
190
Os 0.05 0.05 0.54 1.41 95. 46 2.6
192
Os 0.0l 0.01 0.19 0.37 0.77 98. 68
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was feasible in the work of the above-mentioned authors and consequently the 6+
and 4+' levels have also been observed and quantitative information relative to their
excitation obtained.

The decay scheme of Fig. IV-2 shows the levels excited and the transitions
observed in this study. Singles spectra were taken with both NaI(T1) and Ge(Li)
detectors at bombarding energies of 48. 26, 62.10 and 70. 30 MeV and samples are
shown in Figs. IV-3 and IV-4. A weak 511 kev line is observed in these spectra due
to annihilation radiation. The other transitions can be identified by comparison of
their indicated energies with those in the decay scheme of Fig. IV-2. The results
of the ¥-¥ coincidence measurements further verify these assignments (see below).

The y-¥ coincidence measurements were performed at 70. 30 MeV. Spectra
were taken of coincidences with the 137 kev transition (2+——0+) and the 297 kev trans-
ition (4+—— 2+). Narrow gates were set on these peaks to avoid as much as possible
admission into the coincidence spectra of y-rays in coincidence with transitions
of similar energy in the other osmium isotope target contaminants. The results
are shown in Figs. IV-5 and IV-6. Although the spectra are shown without prior
subtraction of accidentals, it is clearly seen that the 768 kev transition isabsent
in both spectra indicating it is probably a direct deexcitation to the ground state.

A 2+' state is known at 768 kev. These facts, plus the intensity of the transition
and its energy dependence as seen in the y-particle data, identify it as the cross-
over route by which the 2+' state decays. The cascade route from the 2+'——2+ state
results in emission of +y-rays of energy 768 - 137 = 631 kev. This assignment for
the 63l kev transition is confirmed by the %-¥ data which shows that the 631 kev
transition is in coincidence with the 2+—-0+ one but not with the 4+——2+ deexcitation.
The Os186 targets turned out to be the least clean of any and hence backgrounds in
the singles and ¥-¥ spectra are correspondingly higher. Thus the weak 4+'——2+
transition at 933 kev, seen in the ¥-particle spectra, is not discernable above the
backgrounds in the spectrum of coincidences \‘Nith the 2+——0+ v-rays. From the
energy of the transition and by comparison with the decay properties of the neigh-
boring Os isotopes little doubt is left, however, as to the nature of this transition.
Similar comments pertaining to target purity apply to the 434 kev transition, which,

nevertheless, is, albeit weakly, observable in both y-¥ coincidence spectra, thus
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confirming its assignment as due to the 6 4" transition.

y-particle coincidence spectra were taken at 48. 26 MeV, 62,10 MeV and
70.30 MeV and are shown in Figs. IV-7, IV-8 and IV-9. In addition to the peaks
at 137, 297, 631 and 768 kev which are due to the transitions 2+——0+, 4+—>2+,
2+'—&2+, 2+' —-0+, photopeaks are seen at 434 and 933 kev. These, as noted
previously, are due to the 6+——4Jr and 4+'-—-2+ transitions, respectively. The
6" and 4+' levels have not been previously Coulomb excited and B(E2) values
associated with them are obtained here for the first time (See Chapter VI). The
energy dependences in the y-particle spectra of the various transition intensities
are consistent with the level assignments in the decay scheme of Fig. IV-2. (Again,

see Chapter VI).
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C. 03188

Like many of the even-even osmium isotopes Os188 has been extensively

3

. 7
studied by the (&, xn) reaction 0 and by techniques related to the use of the

72, ’ - i i
75, 87 90. These studies have established a detailed level

radioactive decay
structure and decay scheme up to an energy greater than 2. 0 MeV. Using exper-
imental branching ratios, energy level systematics and model predictions, the’
low-lying levels of Os188, like those of Os186 and 08190’ have usually been grouped
into two rotational bands built respectively on the ground state and on the second
excited 2+ level. The low-lying levels and transitions seen here are indicated in
the partial decay scheme of Fig. IV-10.

18
Unlike Os 6, Os188 has been studied several times via Coulomb excitation

°8, 70, 1, 91-93. The first three excited states have been seen in these studies
and B(E2) values for their excitation have been ohtained. Unfortunately, due to
target problems and to lower energy projectiles than were available in these studies,
counting statistic;s in earlier work were very poor and the B(E2) values were quoted
with errors of + 30-40%. Furthe)rmore, disagreements among different observers
on B(E2) values (other than on the B(E2:0+——2+) value which is known from lifetime

?

measurements8 6 also) often amount to factors of two to four. In the present
studies cleaner targets and a variety of O16 energies from 42-80 MeV have enabled
us to obtain new measurements on these low-lying states and to extract B(E2) values
accurate to about +10-15 %. Furthermore; several higher-lying states, not
previously excited, have been observed and B(E2) values for their excitation obtained.
In addition, the data cited below are consistent with the observation of two new
transitions emanating from a previously unknown level at about 780 kev. More will
be said below about this tentative assignment.

Figs. IV-1l and IV-12 show sample direct spectra taken with NaI(T1) and with
Ge(Li) detectors. Other singles spectra were taken at incident O16 energies of
42,00, 48.26, 62.10 and 80. 00 MeV. These spectra have been useful for verifying

1
branching ratios obtained from the ‘-particle data. In Os 86, 188

there is a peak
or shoulder in the direct and ?y-particle coincidence spectra at about 200 kev. This

is shown by the Ge(Li) data to be.due mainly to the deexcitation of the first excited
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states of several target contaminants. Many of the other peaks shown in the Ge(Li)
data are from transitions in Os188 itself as can be seen by comparison with the
decay scheme of Fig. IV-10. The other peaks can usually be identified with tran-
sitions in target contaminants. One peak in particular which should be noted in

the Ge(Li) spectrum shown is the transition at 780 kev. Admittedly, the peak is
seen only weakly above the background but it appears in two of the higher energy
Ge(Li) spectra and the statistics are sufficient for it to merit acceptance. The

v - singles data do not determine its origin, however. Further discussion of this
transition is given shortly and also in Section IV-E.

Again, y-v coincidence spectra with the 2+——0+ and 4+—-2+ transitions were
taken (at 70. 30 MeV) and are shown in Figs. IV-13 and IV-14. vy-particle spectra
were recorded at 42. 00, 48. 26, 62.10, 70. 30 and 80. 00 MeV on thick Os188 targets
and at 62.10 and 70. 30 MeV on thin 05188 targets. These are shown in Figs. IV-15
to IV-21. The structuresat 155, 323, 478 and 633 kev are predominantly due to
the 2+——0+, 4+—»2+, 2+'——2Jr and 2+'—>0+ transitions, respectively. The energy
dependence of these peaks, the angular distribution measurements and the analysis
of the -y data are consistent with the above assignments. As will be shown,
however, both the 478 and 633 kev peaks have small contributions from other tran-
sitions in them. Corrections for this have, of course, been made. The +-particle
data taken at 62.10 and 70. 30 MeV on both thick and thin targets clearly show
additional peaks at 806 and 931 kev. The energies of these peaks are consistent
with their being due to the 4-'“—-2+ and O+'——2+ deexcitation of states at 961 and 1086
kev, respectively. These assignments are confirmed by the ¥-y data. Both
transitions are present in the spectrum of coincidences with the 2+—-0+ transitions
but are absent from the spectrum of coincidences with the 4+-2+ transitions.
Furthermore, the energy dependence of the intensities of these transitions is
satisfactorily accounted for by assuming the above assignments (see Chapter VI)

A very weak transition at about 780 kev is observed in the {-particle spectra
taken on thick targets at 62.10 and 70. 30 MeV. Presumably it would-appear more
clearly in the thin target results if statistics in those spectra were better. This
transition cannot be fit into the known decay scheme of the low-lying levels of

Os188 94. Search for a 780 kev transition in the y-% coincidence data reveals none.
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However, the 633 kev peak in the spectrum of coincidences with the 2+—> O+ transitions
does not vanish when accidentals are subtracted as it should were it due to the 2+1* d+
deexcitations. Note, however, that 155 + 633 = 788 and so a consistent interpretation
is afforded by postulating a new level at = 780 kev which decays both to the ground
state and to the first excited state. The = 630 kev y-ray would not be seen in the
direct or y-particle spectra because of the strong 633 kev transition. It would
also not be resolved even with the Ge(Li) detector. The absence, after subtraction
of accidentals, of a =630 kev transition in the ¥-¥y spectrum in coincidence with
the 4+—’2+ transitions is consistent with the above interpretation. The spin of this
level is not known and not established by the data. In principle it could be determined
by the transition's energy dependence but the photopeak is so weak that experimental
errors are large. Furthermore, for weakly excited states the excitation is dom-
inated by factors (df(£)) which do not have sharply different dependencies on energy
(see Chapter II). The decay routes of the state do, however, imply that it is not a
0+ state but that it could have spin and parity of 2+ or 3 .

If one determines the relative intensities of the 2+'——0+ and 2.'-'—~2+ tran-
sitions one finds a variation with energy of up to 25% in their ratio. This implies
the existence of another transition building up the intensity of the 478 kev photopeak.
The variation is such as to imply a very rapid increase in intensity of this tran-
sition with O16 energy. This in turn is a signal of a state principally populated by
higher order processes (see Chapter II). The Y-rays from the deexcitation of this
level are not resolved from the 478 kev (2+'—-2+) y-rays even with the Ge(Li)
detector. All these points are consistent with the interpretation that the transition
is due to the 6+——4+ deexcitation. If this is true, a transition at 472 kev should
remain in the <y-spectrum in coincidence with the 4+——2+ y-rays after accidentals
are removed. (If the 478 kev transitions were all due to the 2-'-'—-—2+ deexcitations
this would not be so). In fact, such a transition does remain, adding confirmation
to the above hypothesis. The observation of the excitation of the 6+ state is also
consistent with its clear observation in the two surrounding nuclei, 05186’ 190.

One would also like to be able to obtain a measure of the 6+——4+ transition intensity
in the Y-particle data. Being masked by the 2+'—~2+ transitions makes this difficult.
The only recourse is to extract it by realizing that the 6+ state is negligibly excited

4!
at 42 MeV, and by defining the true branching ratio of the 2 level by its value at
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that energy. Then, the variation of this ratio with O16 energy can be ascribed to
the 6+——4+ transition. Thus a measure of its intensity as a function of energy is
crudely obtained. The branching ratio varies from energy to energy typically by
2-5% and the process of subtracting large numbers to obtain results of less than
5% their size is quite suspect. This procedure has nevertheless been carried out
and the results are fairly gratifying. The excitation probabilities thus obtained for
the 6+ state fall below those for Os186 and very near those for Oslgo. This is not
inconsistent with expectations based on systematics. Thus a B(E2:6+——4+) value
can be obtained from the data although errors will be slightly larger than for other
B(E2) values (see Chapter VI).

It should be noted that the photopeak from the 4+' ——4+ transition is also
found under the strong 478 kev peak. However, from our observations of the
4+'—>2+ transition intensities, and from the known branching ratio of the 4+'
state72, the contribution to the 478 kev peak from the 4+'——4+ transitions can be
approximately eliminated. Although another source of error is thereby added to
the determination of the 6+——4+ intensities the abover does not prohibit the extraction

of the latter from the spectra.
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190

186, 188 190
, Os has been extensively studied by radioactive decay

72, 88, 95, 96

Like Os
methods and a complex decay scheme evolved The spins and parities
of many levels are known. The partial decay scheme shown in Fig. IV-22 illus-
strates the levels excited in these experiments. (At 840 kev a (dotted) new tran-
sition is seen.)

Previous Coulomb excitation studies of Os190 have obtained B(E2) values

-+
0 71, 91, 58-

. + o s 97
for the transition 2 — These are confirmed by lifetime measurements.

+ +
In addition, the 2 and 4 levels have been Coulomb excited weakly and with poor

statistics5 However, since the 2+—‘_» 24: and 4+——2+ transitions are nearly
degenerate and unresolved by NaI(T!) scintillation detectors, extraction of
quantitative information concerning the excitation probabilities of these states is
beset by another major source of error. Thus the previously measured B(E2)
values for transitions involving the 4+ and 2+‘ states are subject to very large un-
certainties (on the order of 40% or greater). In the experiments here these problems
were avoided with the use of the Ge(Li) detector and more accurate B(E2) values
have been obtained.

The v-singles spectra taken at energies of 70, 30 MeV with a NaI(T1) counter
and at 48. 26 and 70. 30 MeV with the Ge(Li) detector are shown in Figs. IV-23, 24
and 25. The most prominent feature of the NaI(Tl) spectra is the presence of three
rather than four major peaks. This is due to the just mentioned near-degeneracy
of the transitions 4+——2+ and 2+'—-2+. However, as Figs. IV-24, 25 show, these
transitions of 361 and 370 kev are resolved by the Ge(Li) detector. By using the
relative intensities of the 2+'——0+ and 2+‘—-2+ transitions at 557 and 370 kev as
obtained from the Ge(Li) data, and by demand.ing the same ratio in the ‘y-particle
Nal(Tl) data, the relative amount of the 370 kev component of the composite 361-
370 kev peak was determined. The remainder of the peak is due to the 4+---2+
transition whose intensity is thereby also determined.

An interesting point graphically evidenced in the Ge(Li) spectra is the con-

'

+ 4+ +
siderable variation with energy in the relative intensities of the 4 -2 and 2 —2

+
transitions. As expected, the excitation of the 4 state has a generally stronger
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energy dependence than does that of the 2+' state. We, indeed, note that the 361 kev
(4+——2+) peak is smaller than the 370 kev (2+' —+2+) peak at lower bombarding energies
but larger at 70. 30 MeV.

The y-y and y-particle coincidence spectra are shown in Figs. IV-26-3l.
The main peaks of 187, 361, 370 and 557 kev are due to the transitions: 2° —0
4+——2+, 2+'—>2+, 2+'—-0+, respectively. These assignments are confirmed by the
transition energies, the %y-y data and the energy dependence of the transition
intensities (see Chapter VI), as well as by our angular distribution measurements.

Thg 500 kev (6+——4+) transition is partially obscured in the %¥-particle
data by the much stronger 557 kev transition, but emerges clearly, as it should,
in both -y spectra. There is little doubt as to its origin.

In the y-particle spectra at 62.10 and 70. 30 MeV a wide peak at or around
800 kev is seen. From the level scheme and the systematics in this region one
expects a 765 kev transition from the known 4+' level to the 2+ level. Such a
transition is in coincidence with the 2+——0+ ¥-rays and should be seen in the appro-
priate Y-¥ spectrum.In fact, it is, as can be seen from Fig. IV-26. In order
to complete the analysis of the corresponding peak in the ?y-particle data we must
determine if it is coinposite. Its width there, as well as its asymmetric shape,
indicates that it is. The asymmetry in shape is especially clear if one pair averages
the vy-particle spectra in this region. Evidence for a composite peak, the second
(higher-lying) member of which is not in coincidence with the 2+——0+ transitions
is also obtained by comparing the shape of this peak in the y-particle and -y
spectra which have the same %y-ray energy calibration (Figs. IV-26, 3l).

Thus we conclude that there is a transition at about 840 kev in addition to
the 4+' ——2+ transition at 765 kev. The nature of the former transition is not known.
It can probably be presumed from its absence in the y-¥ data that it represents a
transition to the ground state. Furthermore, no transition of energy around 840 -
187 = 653 kev is seen in any of the Yy-ray spectra, precluding at least a strong decay
branch of the level involved to the first excited state. Reasonable spins for this level
would be 2+ or 3 . If there actually is a weak and unobserved branch to the 2+' state,
then this level could be analogous to the 780 kev level proposed in Os188, and perhaps
to the 855 kev level to be proposed in 08192. See the following section for a more

complete discussion of this triad of levels,
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192

The structure of 03192 is much less well-known than that of the other isotopes

y

discussed78. Radioactive decay studies have only revealed four excited states
76, 98, 99. The 2+, 4+ and 2+' states have also been Coulomb excited 70, 71, 82
although, once again, uncertainties in obtaining B(E2) values have been large.

As before, quoted errors are in the region of + 30-40%. The decay scheme for
Os192 shown in Fig. IV-32 contains the levels seen in the experiments performed
here. (The proposed and heretofore unseen transition at 855 kev is discussed
below.) Sample *y-singles spectra taken with NaI(T1) and Ge(Li) detectors are
shown in Figs. IV-33, 34, 35. Figs. IV-36-43 consist of the - and ‘y-particle
coincidence spectra. Data has been taken on both thick and thin targets as indicated
in the figures. The thick and thin target ‘ NalI(T1) singles spectra at 62.10 MeV
illustrate one advantage of thick targets in exp‘eriments not involving coincidences
with backscattered particles: namely, they have much smaller surface-to-volume
ratios than thin targets and thus, percentagewise, less surface contamination and
oxidation and therefore larger peak-to-valley ratios emerge in the y-ray spectra.

The level scheme, y-¥ data, angular distributions, variation of ¥y-ray
intensities with energy and the general systematics in this region are all consistent
‘;vith correspondences of the 206, 283, 374 and 489 kev peaks to the 2+——0+, 2+‘——2+,
4+——2+, and 2-'-'——0+ transitions, respectively. The 'hump' on the high energy
side of the 489 kev peak in the vy-particle data is a sum peak resulting from coin-
cidences of the 44"——2+ and 2+—+O+ transitions.

No evidence for the excitation of 4+' or 6+ levels is seen in the spectra taken
on 03192. This is consistent with the view that, with Os192, we are finally nearly
out of the region of large stable deformations and of well-developed rotational
structures. One would now expect that rotational band structures would be highly
impure and would not persist through nearly as many levels as in the other Os iso-
topes. (&, xn) reactions would be a useful tool for investigating more thoroughly
whether or not 6+ and 8+ levels exist as part of a ground state rotational band in
08192.

16 .
A new transition is seen, in the data taken at higher O = energies, at about
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855 kev. This transition is not seen in either of the %-¥ spectra and so possibly

represents the decay of a new level at that energy to the ground state. Reasonable
. m + -

and consistent J assignments for this level are 2 or 3 . Thus, referring to the

: . 188 190 .
discussions of Os and Os 9 , we see that it is likely that previously unobserved

18 0 -
8, 190, 192, at energies of about 780, 840 and 855 kev, respec-

levels exist in Os
tively, which decay predominantly or solely to the ground state, and which can
perhaps be suspected of having Jﬂ assignments of 2+ or 3. It is hard to see how

an isolated 2+ state could be present at these energies unless it is the second member
of a K = 0 rotational band built on an unobserved (8 vibrational ?) 0+ state. Most |
nuclear models, indeed, do predict 0+ levels at around 500 to 1200 kev in these

nuclei but none have yet been found except for the well-known 1086 kev level in

Os188. However, if these 0+ states are 'present, they should have béen seen in the
y-particle spectra, for their excitation is enhanced relative to the 2+ states of the
same band when coincidences with backscattered particles are recorded. Also, if
these three states are indeed of similar character and are assumed to be 2+ levels
with associated O+ states at lower energy, this would imply the existence of three

0+ states in 03188, in addition to the ground state, below 1800 kev. This would be
difficult to explain with most theories of nuclear structure in this region.

On the other hand, collective 3 states have recently been found25’ 100 in
the low A end of the rare earth region and it would not be surprising if they were
also present here. No definite conclusion can be drawn from these considerations
and final spin assignments should await further experiments. For example, (p,t)
reactions leading to residual even-even Os isotopes would tend to preferentially
excite any collective 0+ or 3" levels in these nucleilO}. Determination of trans-

“ferred 4 -values might be able to help pin down the spin of these levels and to

determine if, indeed, they are all of similar structure.
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V. DATA ANALYSIS

A. Data Reduction

In this chapter the techniques for data analysis will be described. Most
of the enphasis will be placed on the analysis of the Y-particle data. Logically,
the chapter is divided into two parts in which are described, respectively, the
reduction of the experimental data to a form convenient for extraction of nuclear
information, and the actual extraction of that information.

The raw ‘-particle data consist simply of spectra of %y-rays known to be
in coincidence with incident O16 ions backscattered, with energies greater than a
certain minimum value, Emin’ into an annular surface barrier detector. The
y-rays result from the decay of nuclear states whose excitation has been infiuced
by O16 ions of energies ranging from the incident energy to a lower energy, Ecut'
Ecut is the energy, just prior to backscattering, of an O16 ion such that it enters
the detector, at the most backward sensitive angle, with the minimum energy, Emin.’
accepted by the single channel analyzer of the linear particle signals (see Section
ITI-E). As an example, in several runs, the energy, Emin’l én the particle detector
spectrum was set at 23. 30 MeV. For 70.30 MeV incident O = ions only those that
were backscattered prior to being reduced in energy below about 57.1 MeV due to
energy loss in the target, could be scattered through 1650, pass out through the
target and yet be detected with energies greater than Emin' More will be said
about the matter of cutoff energy later.

The first step in data reduction consists of obtaining the number of counts
in each ?y-ray photopeak. Technically speaking, prior to this, correction for
accidental coincidences should be made by subtracting from the coincidence spectrum
the direct spectrum normalized by the ratio of accidental to true coincidences.

This correction can be quite large in many cases. Fortunately, however, in these
experiments, target cleanliness was sufficient that corrections for accidentals
were always less than 2%.

Having corrected for random coincidences, one can then analyze the exper-

imental spectra for peak areas by subtracting out, in turn, the entire spectrum
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resulting from each Y-ray transition, starting Iwith that one highest in energy.
The subtraction may be performed by employing standard <y-ray spectra, recorded
with point sources placed at the target spot and in geometries identical to those
pertaining to actual running conditions, to fit each photopeak intensity. The use
of the standard spectra then enables accurate estimation of photopeak widths

and areas and provides a means for quantitatively eliminating Compton edges and
backscatter peaks. However, if the coincidence spectrum is relatively free of
contaminants and the number of peaks is moderate, such a detailed procedure is
not always necessary. Such was indeed the case in these spectra. Peak areas
obtained with seriously different and extreme background estimates differed

only by a few percent and areas obtained with different but '"reasonable " back-
grounds differed by even less. From a knowledge of the general shape of the
standard spectra or from a knowledge of photopeak-to-Compton ratios10 , the
effects of Compton scattered photons could be easily eliminated with considerable
accuracy.

Peak areas themselves were obtained in three ways, the results of which
never differed from one another by more than 5%. The first consisted simply
of summing up the counts/channel under the photopeak after a sloping background
had been subtracted. This background included the effects of multible processes
that should not be included in the photopeak as the latter is defined by Hea.th102
and as it is construed in Heath's tabulati‘ons of ‘photopeak-to-total ratios.

The second, and third, more accurate, methods, used whenever statistics
were sufficient for photopeak shapes to be well-defined, may be called the parabola
and the modified Gaussian methods. 102 (The 7y-ray peak is approximately a Gaussian
or modified Gaussian in shape.) These two methods use this fact to fit a Gaussian
(parabola on semi-log paper) or modified Gaussian to the peak involved.

Such a procedure is especially useful if for some reason only part of a peak
is suitable for obtaining areas. Thus, if another y-ray peak is superposed on the
high-or low-energy side of the peak of interest, the top and opposing side may be used
to reconstruct the actual peak (See the 557 kev transition in 08190 for an example
of a case in which the utility of this approach is clear). The backgrounds used in

these methods should properly include only the effects of detector efficiency variation
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and of the gradually rising Compton and nuclear reaction background since asymmetric
effects, such as those due to forward scattered Comptons, are automatically eliminated
by the symmetrization inherent in these methods.

The final peak areas obtained must be corrected for detector efficiency
and solid angle, photopeak-to-total ratios, ?Y-ray absorption prior to entrance
into the detector proper, and internal conversion effects. For a given transition,

these corrections are combined in the formula:

1 (1 + a! 1
= V-1
Ti-' f nA Ti—‘f
' .
where: Ti - f =- total number of nuclear deexcitations from level i into
level f assuming isotropic distribution of the deexcitation
V‘rayS,
1" N
Ti ot = the number of counts in the photopeak corresponding to
this transition,
o = the internal conversion coefficient,
n = photopeak efficiency times photopeak-to-total ratio,
and A = the fraction of ¥-rays not deleted by absorbers.

The internal conversion coefficients were obtained from calculations by
10 . .
Sliv and Band 3 which include corrections for finite nuclear size. The coefficient

o is taken as given by:

The experimental internal conversion coefficients for the decay of the first excited

104 C s
186, 188 differ considerably from the theoretical ones’ . This is an

states in Os
unavoidable source of error in the results for these two transitions. For consistency,
theoretical coefficients have been used throughout.

The absorption correction factors, A, were obtained from calculations
based on attenuation coefficients given in Wapstralos. The absorption was also
checked experimentally. To within the accuracy of the experimental results the.

accord between calculated and measured absorption factors was quite good. With
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the thick Os targets, the strongest absorber was the target itself. Although
monoenergetic calibrated "point " sources106 were used in these measurements,
it was difficult to determine' if the sources were located precisely behind the small
Os targets. However, the consistency of the data taken on thick and thin targets
provides an internal confirmation of the thick target contributions to the absorption.
The efficiency factors, 7, were obtained by interpolation from tabulations
of efficiencies and photopeak-to-total ratios by Hea‘ch102 for a 3 x 3 inch NaI(T1)
detector for various y-ray energies and source-detector distances.
The result of eq. 1, T'i—‘ f’ , would be the total number of transitions from
level i to level f were the %-rays representing this mode of decay isotropically

1
distributed. As it is, Ti—' must be multiplied by 1/ W(0) where W(8) is equal to

f
the value of the angular distribution at the mean angle of the y-ray detector and

is normalized so that

}(W(e)dn= 4m V-3

Thus, if Ti—~ = the total numer of deexcitations (via 7y-rays or conversion

f
electrons) of level i to level £, then

i=f . V-4
Tt = w(8)

The anisotropies, which may in principle be large, are greatly reduced by
placement of the %-ray counter at 550 to the beam direction. Then the second
order term in a multipole expansion of W(8) (see below) vanishes and only the
relatively small fourth order term can lead to deviations from isotropy. The
angular distribution correction, W(6) was calculated theoretically and measured
experimentally as well. Agreement between experimental and theoretical values
is within 20%. Since W(6) itself generally entails only a 5-10% correction (or
typically 25% for the 2 e 0" transitions), a 20% error in W(6) results in small
overall error.

A general expression for the angular distribution of y-rays corresponding

to the fransition I - If following Coulomb excitation from initial level Ii is given
107
by
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*

. ' k
wo, 0=y _
even k K'
AN
where
1/2
%k + 1 I * M
g’ = 2 -1) Z (I Ik) Dk ' (_11_’ 17+9, O)('l)
2 +1 @I +1) -M MK KK 2 2
! K, M,
M *
LM LM
X Eal M % M
M;

£ I) are well-known geometrical coefficientsm8 , 6>\ is

and where the Fk (AT
the relative amplitude for the 2>\- pole transition, Oy and qoy describe the direction
of emission of 7 radiation with respect to the incoming beam, 6 is the asymptotic
scattering angle of the incident projectile and aii xi is the amplitude for excitation
of the magnetic substate M of a nuclear level of spin I, from an initial state with
quantum numbers Ii Mi'

In general, the angular distribution must be integrated over (p_y , particle
scattering angle and energy and is quite complicated. However if an annular
particle detector symmetrically located with respect to the incident beam is
employed, only the K' =0 terms survive and the resulting D%z( 97, (p‘y, 0) functions
reduce to Legéndre polynomials, Pk (cos S,y). Furthermore if Yy-rays are
detected only in coincidence with particles scattered backward through large angles
an additional simplification occurs. In this case, for zero épins in the entrance
channel, the so-called p = 0 approximation (see Section II-C) applies in which
only M = 0 magnetic substates are considered to be populated, Then the summation,
over M and M', degenerates to a single term. The same factor, aii g . a; g
then occurs in all terms of W(68) and hence may be factored out. Thus the angular
distribution becomes independent of excitation mechanism and so also of incident
ion energy. Thus, no integration over particle energy is required, and furthermore
the calculation becomes model-independent. (See Section II-C for a more detailed

discussion of the = 0 approximation). It also turns out that an error of less
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than 2% is introduced into the experimental cross sections if, in addition, one uses
a single mean particle scattering angle, emean’ and omits the integration over
particle scattering angle. In the calculations for this thesis a mean scattering

angle varying from 165° to 170° has been used.

With the simplifications just discussed the %-ray angular distribution

for the case of particles backscattered into an annular detector becomes (for

E2 radiation)

*
k
w (6) —E Fk(221f1)gk0D00 (67,(py 0) V-6
k even
or, explicitly written out:

W(8)= F (221 Dg  +F, (221 Dg, P, (cos 67)

+F4(2 2IfI)g40 P4(cos GJ

Dividing by FO (22 If I)g'OO = gOO gives:
6 520 6 240 6) v-8
W@) = 1+F, (221.1) " P, (cos y)+F4(221fI) ™ P, (cos 8) V-

80 is now given by (setting Ii = 0):

g - 2(2k+1 )1/‘2» (1 Ik) Dk* (1, 7+ Omean, 0) V-9
0 21 +1 000 00 \ 2 2

Once again, the advantages and simplifications of the Yy-particle coincidence
technique are manifest, for, clearly, if y-rays in coincidence with-all particles
are recorded, neither the annular detector, g = 0 approximation nor the single
mean angle simplifications are possible.

In the experiments performed here the y counters were placed at 8 = 55°
to the beam direction and so the P (cos 6 ) term in W( 8) vanishes. Since the
coefficient of the P (cos 8 ) term is generally small, W(8 = 55° ) is close to

1. 0 and the angular d1str1but10n correction factor ultimately alters the experimental
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numbers very little.. Eq.8 for W(8) is not yet quite complete, though, for- it
neglects the smearing out of the angular distribution due to the finite size of the
¥ counter. A complete expression, valid for these experiments (annular particle
detector, with amin-? 1550, ey = 550), and which includes the appropriate solid

angle corrections, is:

A A
o 2 o 4 o
W = = —— ————
(6 =55") 1+Q2 Y Pz(cos55) +Q4 A P4(cos55)
0 0
A4 o
= 1 +Q4 o P4 (cos 55 )
0
A4
or =1- 0.382 Q, — V-10
4 A0

where Ak = Fk (2211.I)gko and where Q 4 is a finite solid angle correction factor
for the 4 ray counter. Values of Q 4 corresponding to the geometry of these
experiments, were obtained by interpolation from a tabulation by Yatele4. Eq. 10
was used in the analysis of all the %-particle data taken. Typical values of
W(G_y = 550) for most transitions are about 1.07. For 2+-° 0+ transitions W(G_v = 550)
is typically about 1. 30. In the % singles and y-¥ data the angular distribution
correction, though energy dependent, is always less than 1. 10 for 9‘y = 55°,

Tests of the independence of W(B) of incident energy and of excitation
mechanism were made using the Winther and de Boer computer prog'ram61 with
the five magnetic substates through M = 2 considered. The independence was
verified to within 1 %. _ .

Finally the angular distributions of 7y-rays from the stronger transitions
were experimentally measured in both direct and %Y-particle modes for 48. 26 MeV

186, 188, 192

O16 ions incident on thick Os targets and for 70. 30 MeV O16 ions

incident on thick Os188’ 192 targets. The experimental measurements were carried
out at Oo, 55O and 90o to the incident beam and, for the #Y-particle cases, are
compared, for several transitions, with the theoretical results obtained from eq. 10,
in Fig. V-1. W(@) is normalized to 1. 0 at 55° in these figures. Agreement of

+ o+ oes
experiment with theory is quite good except perhaps for the lowest 2 = 0 transitions
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at 90°. Here, however, the *-rays had to pass through large amounts of target
material before entering the y-ray detector and absorption calculations and
measurements at 90° for these lowest energy %-rays are subject to very large
errors. Theoretical angular distribution correction factors have been used through-
out the data analysis and errors from this source are expected to be always less
than 5% |

Returning to a consideration now of eq. 4, we see that in order to extract
the total number of real excitations of a given level i, one must sum the fully-

corrected quantities Ti-' over all levels, f, into which level i can decay, and

f
must subtract from this result the sum of all an ¥ that is, of all contributions
to observed transitions Ti-* £ due to population of level i via cascades from higher

levels. The resulting number for the ith level is called Yi and is given by

Y.=§T. -ET. V-11
i i=-f T n—i

f<i n>i

Strictly speaking, there is a slight error in subtracting the Tn—'i's directly since
the angular distribution of ¥-rays from level i to some level f is not the same if
level i was populated via Coulomb excitation as it-is if population resulted from
deexcitation of a higher state. In pracfice, this effect consists of, at most, a
10% correction to a 5% cascade correction, or less than a 1% overall error.

The experimental results at this point have been reduced to a set of
numbers, Yi’ representing the total yield ofGexcitations of each nuclear state
arising from Coulomb excitation by those O = ions in the energy range E <E< Ei

cut— —
which were backscattered into an annular detector. It is convenient to convert

nc

these into probabilities of excitation instead. By doing this one tends to minimize

certain sources of error in the calculation of the theoretical numbers corresponding
2 .

to these experimental results 5. Thus we now divide the yield for each state by the

total integrated numbers of particles, denoted by N, backscattered into the detector

with energies above the minimum, E_ . . The result, Pi , is thus given by
min ave
Yi
= —— V-12
Pl N
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P, is an average probability for excitation of state i under the conditions
cited abovaé‘{e The theoretical result for the same quantity may now be calculated
and the only unknowns remaining, the nuclear matrix elements, may be obtained
by fitting the theoretical Pi 's to the experimental. There are several techniques
for calculating the theoretigzleresults and to each one corresponds a slightly different
manner of comparison with experiment. These considerations are dealt with in

the following sections .
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B. Extraction of Nuclear Information

We wish to evaluate theoretically the same quantities as obtained experi-

mentally, namely the numbers, Pi . A suitable theoretical expression which
ave
achieves this is: 9
max Einc do;
fe aQ f dQI(e E)——dE
p - min Ecut; V-13
ave inc
je ~dg f dc’l(e E)—dE
min 1 Cut 1

The numerator is essentially the thick target integral of the differential cross

section for excitation of level i. The denominator is also a thick target integral,

but essentially of the number of particles Rutherford scattered into the detector.

This becomes clear when it is recalled that doi/dQ (6, E)={do/dQ (6, E) }Ruthpi (6,E)

(see eq. II-61). Thus the denominator may be written as:

_ max inc dE _
Den = J‘ dQ z J‘ [ (6, E)} P, (8, E)—————dE/dS V-14
m1n 1

Ruth

The Rutherford cross section must be weighted by the probabilities only because

the proper cutoff energies, E are functions of the excitation energy of the °

cut;’
level i. Thus the inner integral cuts off at different lower limits for each state i.
In practice, the range of integration differs by only about 5% for the ground
state and states at about 1 MeV. The integrand also in general decreases rapidly
with energy and so the additional range of integration corresponds to the smallest
contributions of the integrand to the integral. Furthermore, the weighting factors
Pi (8, E) for states other than the ground or low-lying first excited states are
always less than .10. Consequently, omission of Pi (6, E) altogether, and
evaluation of the integral from Einc to an Ecut corresponding to an excitation
energy in the target nucleus midway between the ground and first excited states,

leads to errors less than 1%. Thus we can write the theoretical expression to be

evaluated as:




2] Eine
max 4o do; dE
P _ Jt-e min IEcuti H'Ql(e’E) dE/ds V15
i ) E.
ave max Inc | 4o _dE
Jo ool & @R | pun— a7
min

CUAE=E,+/2)

Finally, it has been found that the variation as a function of angle in the
value of the integrand over the angular range of interest is essentially negligible
for the lowest states excited and about 5% for those excited by the highest order
processes. Consequently, as mentioned previously, deletion of the angular
integration and replacement of it by evaluation at a mean angle, emean’ isa
highly accurate approximation. Resulting errors thus introduced are less than
2% at most. An additional advantage of this approach is that now d, the solid
angle subtended by the particle detector, drops out and errors associated with

definition of the sensitive area of the detector are avoided.

The final expression for Pi is therefore
ave
Eine 40j (8 an’ E) dE
Ecuty dQ e dE/dS
P. = V-16
lave J*Einc 4o (8nean: E) dE
YR ¢ dQ Ruth dE/dS
T AE=E,/2)
E. , dE
nc do , . —_—
or J‘E ne 'ag_(emean"E) R‘uthpl(em'ean’E)dE/ds
cuti -
P. = V-17
! E
ave J‘ inc do (emean’ E)] dE
E de Ruth gg/ds

cut

Some of the advantages of considering probabilities rather than yields are
cut’ 6mean’ dE /dS

now apparent from eq. 17 which shows that errors in Einc’ E
tend to cance125. Eq. 17 is general and is applicable to

do
and [ ]
"9L7ae | Ruth

any Coulomb excitation process provided the Pi appropriate to that process is

inserted. In the discussion, therefore, of perturbation theory, model-dependent

analyses and the Winther and de Boer program calculations, it is usually necessary

76
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only to consider the evaluation of Pi'

In eq. 17 [-g_g—( 8, E)] is evaluated according to the expression
just below eq. II-6l1. Eouti is obtained by a straight forward energy loss and
kinematics calculation from a knowledge of the minimum acceptible energy in the
particle detector spectrum, the excitation energy of level i and the differential
energy loss in the target, dE/dS. The latter is obtained by interpolation in Z in
range-energy curves of Northcliffeuo. An expression, quadratic in energy, for

111
the range, S, was fitted 1 to the resulting curve for O16 incident on Os. The

result, which reproduced the curve to within 0. 8% from 24 to 80 MeV is

S, <—r£g-2-)= 3.1722 + 0.29317E + 0.00I78E> V-18
S cm

where E is in MeV. Differentiation yields

_dE - : V-19
s /), 0.29317 + 0. 00356E

as the final result.

The cutoff energy, Emin’ in the particle detector spectrum is obtained after
energy calibration of the detector is made using several accurately known incident
beam energies as essentially monoenergetic sources of O16 ions. Some extra-
polation to low energies usually had to be made to obtain Emin' The values of
E.yt. ranged from about 36 MeV to about 66 MeV in the different runs. Errors

1

associated with Ecu are certainly less than + 1 MeV and probably, more

t.
realistically, about -_ll- 0.5 MeV. The thick target integrations generally involve
an energy range of 6-13 MeV.

Once dE/dS and Egyt are known, the denominator of eq. 17 can be evaluated
once and for all for a given run on a given nucleus. This was done in all cases

. 2 T . . .
using a computer program > which evaluated the integrand at a series of
energies and performed a numerical integration via Simpson's rule. The numerator
of eq. 17 was likewise usually evaluated by a similar thick target integration routine

into which the probabilities Pi were inserted as data or were calculated in a subprogram.
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In this and the preceding section several approximations have been discussed.
These have been related to estimation of peak areas, evaluation of W (8), calcu-
lations of the theoretical Piave , and the like. In practice, the data analysis has
indeed been performed with these approximations but additional treatments have
been performed without them both to obtain more accurate final numbers and to
check on the magnitudes of the errors involved as a result of the set of approx-

imations. The overall errors stemming from these sources is, in all cases,

less than 4% and are much less, therefore, than other sources of error.
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C. Perturbation Theory Analysis

If the probabilities for excitation in a given scattering event are small, then
first or second order perturbation theory may be applied. This method has the
advantage that the calculated probabilities of excitation are directly proportional to
B(E2) values which are therefore easy to extract from the data by equating theo-

retical and experimental expressions for the quantities Pi‘ . Such calculations

have been applied to the excitation of the 2+, 4+ and 2+ states in Os186’ 188, 190, 19

for both 48.26 and 70. 30 MeV incident O16 ions.

The expressions for the cross sections from perturbation theory were dis-
cussed briefly in Chapter II. Here, we give results in a form convenient for
numerical calculations. In all the results cited below we have substituted Z 16 8,

AE
A 1g=16, Z_  =76and A =189 and have set all factors (1 +—E—) equal to 1. 0.

ol6 = Os Os

AE/Eis typically about . 0l. The use of AOS = 189 is an approximation for conve-

nience here which is nevertheless quite accurate since A Os enters the expressions
only through the factor (1 + Aoié /A Os)' In actual calculations for each nucleus the

correct value for A Os was used. All the results below correspond to excitations

induced by an incident O16 ion of energy E scattered through a center of mass
angle 6.
+ U -
The probability for excitation of a 2 state by direct E2 excitation is obtained

from eq. II-71 in first order perturbation theory, and is given by

(1)
do + 1)
p) _ 2 _ O 203E° af'(6, &) B(E2:0%= 27 V_20
2* dop o sin-4(6/2)

where ¢, the adiabaticity parameter, B(E2:O+ - 2+), and df(l) are quantities defined
in Chapter II. The superscript (1) denotes a first order process.

Second order perturbation theory is applicable to the excitation of 4+ states
and to the route O+ (E2) 2+ (E2) 2+' which accounts for some of the excitation of the
2+' states. From ABHMW we obtain for sz)

1.o2x10 0 E® aF (¢, .8, J)
p@ _ 1’ 52

J sin~%(6/2)

the result:

+ +
B(E2:0~ 27) x BE2:2™~37)  v-21
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where, again, the quantities are all defined in Chapter II or reference 60. J is
the spin of the final state and E is in MeV in eq. 21 (and below, eq. 23, as well).
H
In the excitation of the 2 state the cross section is actually given to second

order by eq. II-73, namely,

d02+v = dc(l) + do(z) +do (1,2) V-22

2+l 2+'

as discussed in Chapter II. There is an uncertainty in a calculation using eq. 22
since the relative sign of the reduced matrix elements <0+Il E21 2+'> and

< 2+l| E21) 2+'> in general is not known. It may in principle be determined if
measurements are made at several bombarding energies. Then that sign is
chosen which yields constant B(E2) values as a function of incident energy. Such
a procedure has been used here and indicates that a relative plus sign is to be
favored as more consistent with the data. The negative sign is not entirely ruled
out. Since the excitation amplitudes are complex the interference term may
actually be larger than the double excitation term and should not be ignored. It
ranges from approximately 7% to 25% of d0'2+' as one goes from Os192 to 05186.
(For E2+| = 2E2+ it is zero and generally increases as E2+v departs further and
further from this value. This explains the variation in percentage cited just above)
The result for the probability of excitation via the interference term is given by

pil;2)

Pyn = 2.52x 10 -8 £9/24(1.2)

€, £, 8)[BE2:0" 2+') B(E2:0 ~ 2"
x B(E2:27~ 2 )] 1/2
1,2)

V-23

Sin-4(9/ 2) appears in egs.
(1,2)

See ABHMW for a definition and tabulation of df
20 and 21 for P(l) and P(z), respectively, but not in eq. 23 for P merely
because the df functions are defined slightly differently in the two cases.

In the calculation of the excitation probabilities for the 2+' states the full

expression to second order is analogous to eq. 22:

M (2) ,2)
P2 —P2+| +P2+| + P2+| V-24

(This neglects effects of finite quadrupole moments (see Chapter VI).) If we denote
by A, B and C all the factors in eqs. 20, 21 and 23 respectively except for the

S+t
B(E2) values, then the expression for the excitat ion probability of a 2 state may
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be written:

Py = [A + B [B(E2:0+—° 2™t R] + C-[B(E2:0+—' 2™ R] 1/2] x B(E2:0'~2") V-25

where R is the branching ratio: B(E2:2+.—' 2+$/B(E2:0+'-° 2+i and is known experi-
mentally. From the excitation of the first excited state B(E2:O+-* 2+) can also
be determined and so the only unknown in eq. 25 is B(E2:0+-° 2+') which can then
be determined by comparison with experimental excitation probabilities.

For thick targets, the method of analysis, via perturbation theory, consists
then of simply inserting the appropriate Pi into eq. 17 and integrating. For thin
targets the analysis is simpler for no integration is needed. A further discussion
of the validity of the perturbation expansion and of the contributions to it from

neglected terms of the same orders as those included is contained in Chapter VI.




82
D. Model Dependent Calculations

As discussed previously (Section II-C), when the excitation probabilities
are too high for perturbation theory to be valid one must either fit the experimental
data using a full set of nuclear matrix elements by solviﬁg the coupled Schrodinger
equations (eqs. II-68) or one must assume some model relationship among these
matrix elements. Calculations of the latter kind have been carried out for the
ground band states of the even-even Os nuclei studied using Alder's theory of
multiple Coulomb excitation (See Section II-C). The probabilities to be inserted
in eq. 17 are obtained by interpolation from tables given by Alder64. The inter-
polation is done by a computer program27 which evaluates the probabilities P I as
functions of the parameters q and £, defined in Chapter I, by equating them to
seventh degree polynomials in ¥ = %ﬂ . With these values of PJ the code
can then evaluate the integrand of the numerator of eq. 17 at any desired energy
and proceed to perform the numerical integrations. The input data to the program

consists of A, Z_, A2, Z

1" 1 2’
the first excited state, and the B(EZ:O+ - 2+) value. Other ground band energies

E ., dE/dS, E, , the excitation energy, AE_+, of
min inc 2

and B(E2) values are calculated from the last two quantities using eqs. II-12, 14,
respectively. Tests of the degree to which the rotational model is applicable to
each nucleus are obtained by comparing theoretical and experimental excitation
probabilities as a function of beam energy.

In actual nuclei, the energies of the ground state rotational band members
do not rigorously obey eq. II-12, as assumed by the Alder theory, but rather an
equation of the form of eq. II-17. Thus a source of error ig implicitly introduced
into the calculations. This can, however, be partially avoidedzs’ 70 by using for
AE2+, not its actual value, but a separate, mocked-up number for each state J.
These latter are obtained by using, in eq. II-12, an effective moment of inertia
for the state J calculated so that eq. II-12 gives the correct energy difference
(E. - E ). Since the excitation probability P 3 depends more strongly":on

i) J-2

AE(J ~J-2) than on any other transition energy, a significant improvement in its

calculation can thereby be obtained. One thus removes errors in excitation energies

from the calculations and resulting discrepancies with experimental numbers can
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then be attributed to deviations of the actual B(E2) values from those assumed by
the rotational model.

Model-dependent calculations based on the multiple Coulomb excitation
theory of Lutkin and Winther65 have also been performed. This theory has been
discussed in Section II-C and, like the Alder theory, involves the assumption of
the rotational model. It enables one to extract B(E2:0+ - 2+') values by assuming
the direct first order perturbation theory result for the transition between the
ground state and Yy-vibrational bands and by including the effects of virtual multiple
Coulomb excitation in factors B(q) which essentially ''redistribute ' the final

state excitation probabilities within the <Yy-band.
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E. Complete Calculation via the Coupled

Schrodinger Equations

\

If possible one would like to avoid both the perturbation expansion and the
model-dependent calculations. To do this one must solve the coupled Schrodinger
equations (eqs. II-68) for the time dependent excitation amplitudes, Winther and
de Boer61 have written a computer code which does precisely this. For given
bombarding conditions, the program solves eq. II-68 by numerical integration
over time, that is, over the orbit of the incident projectile.

The nuclear matrix elements Mij or M in the equations are

considered as theoretical input data to the progltlal.m :nd their values are determined
by fitting the calculated excitation probabilities for the several states to the corre-
sponding experimental results. (Further discussion of the program is contained in
Section II-C.)

As mentioned several times previously, it was found in the Coulomb excitation
calculations with this program that, frequently, only the M = 0 magnetic substate
was required. Occasionally (for lower bombarding energies and more indirectly
excited states), the M = + 1 substates were also used. The code has an accuracy
control which is specified by the quantity, a_ defined in reference 6l. Accuracies
in excitation cross sections and probabilities of + 1% are obtained for O16 ions
incident on Os and backscattered at angles 6 > 1550 if a, < 0.001.

The Winther and de Boer program is especially suitable for thin target
experiments since it calculates the excitation probabilities at a given in'(':{dent :
energy. For thick targets the probabilities Pi must be inserted in eq. 17 ar_ld
the integrations over energy performed. This involves the repeated use of the
code at many different energies. Since this can be quite an expensive computational
chore, the program was modified in certain respects and major portions of it
were incorporated as a subprogram into a main program which performs the
integrations over energy for each of the excited states. Cost considerations
necessitated a modified integration routine which lessened the number of energies
at which the Pi were required. Details of this thick target version of the code

are given in Appendix II. The output of the new code is a set of fully evaluated
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numerators of eq. 17, each one corresponding to the excitation of a different
excited sfate.

With the use of both the thick and thin target programs considerably greater
insight was obtained concerning the Coulomb excitation mechanism and the role
of the various matrix elements involved in the excitation processes. In particular
it was found that the set of matrix elements required to fit the experimental results
at a given incident energy was not unique but that if data at several energies was
available a unique set could often be obtained. This is particularly so if the states
involved are predominantly excited via only one route, as is the case for levels in
the ground state rotational band. When two common excitation routes are present,
other information (such as branching ratios) is generally needed in order to pin
down the matrix elements. Further discussions of the results of this form of

data analysis are contained in the next chapter,
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F. Errors

The largest sources of error involved are often those concerned with deter-
mination of photopeak areas. These errors vary greatly from transition to tran-
sition depending on the intensity of the transition, the ease of estimation of back-
grounds and the proximity in energy of other transitions. The errors assigned to
the determination of peak ares vary from about 5% or less for the most intense
peaks to about 20-30% for very weak peaks containing less than 100-200 counts.

In obtaining the experimental yields, errors in absorber corrections,
detector efficiency factors, photopeak-to-total ratios, angular distributions,
electron conversion coefficients, cascade corrections, analyzer dead time and
accidental coincidence corrections must all be included. Several of these have
already been discussed in previous sections. Most are quite small. Except for
the uncertainty in conversion coefficients for the decay of the first excited states
of Os186’ 188, the largest errors are often due to absorber corrections. This is
especially the case for the lower energy transitions. The resultant of these
sources of error is about 18% for the 2+ - O+ transition in Os188, about 15% for the
same transition in Os186 and about 5-10% for the other transitions observed.

In view of the above, the experimental quant'ities Piave are assigned
overall errors ranging from 10 to 40%, with most values having assigned errors
of 10-15%. Estimations of certain sources of error (such as those due to disagree-
ment of theoretical and experimental internal conversion coefficients) involve value
judgements that make it difficult to quote uncertainties as standard deviations. This
has, however, been attempted as far as possible,

Additional uncertainties arise in the calculation of the averaged theoretical
excitation probabilities. Among these are uncertainties in the previously defined
quantities dE/dS, Ecut

functions needed in the evaluation of the quantities Pi in eq. 17. The magnitudes
25, 27

and 6 , as well as in interpolation in tables of
mean

of these errors have been analyzed both here and elsewhere As has been

noted in the discussion of eq. 17, many of these tend to cancel. The degree of

consistency of both thick and thin target results is itself a check and limitation




on the errors involved in the calculation of eq. 17 and on absorber corrections
as well.

All the experimental B(E2) values tabulated in later sections have been
assigned resultant uncertainties that take into account all known sources of

error.
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VI. PRESENTATION AND INTERPRETATION
OF EXPERIMENTAL RESULTS

This chapter contains a consideration of the most important results and
conclusions of these studies. Conceptually, it can be divided into three topics
centering on the experimental excitation probabilities themselves, on the Coulomb
excitation reaction mechanism and its relation to the various calculational techniques,
and on the comparison of the experimental results (chiefly B(E2) values and branching
ratios) with the predictions of the various macroscopic and microscopic nuclear
models. The first topic is dealt with immediately below and, while the next two
are in part discussed in order, they are closely related (e. g. , the rotational model
and Alder's multiple Coulomb excitation theory) and consequently the discussion of
each is largely intermingled with that for the other.

From the discussion of Section V-A we recall that the primary experimental
results obtained in this research consists of the numbers, P, . These are equal
to the average excitation probabilities, per backscattered ionab/n?ith E > Emin)’ of
the various levels (indexed by i). They have been obtained as a function of incident
O16 energy and the results are tabulated below. The experimental conditions under
which the Pi were obtained were all quite similar in their essential aspects.

The data useaé/?or this purpose were the #4-particle coincidence measurements.
Details as to the position of the ¥-ray and particle detectors, and the absorbers
used to eliminate low energy #¥-rays, are found in Section III-A.

Table VI-1 presents a complete tabulation of all experimental excitation
probabilities obtained. The top row of the table lists the incident O16 energy and
the nature of the target bombarded (i.e., thick or thin ). The first column on
the left indicates the level whose excitation is being considered. All entries
relate to a specific run except those for 62.10 MeV O16 ions incident on a thin
Os192 target which are an average of two runs. The two relevant runs in this case
actually gave results consistent with each other to better than 5% for all excitation
probabilities.

Table VI-2 lists similar results for the three transitions, of uncertain origin,

188, 190, 192

at energies of 780, 840, and 855 kev in Os The entries in this table

are not excitation probabilities since we only observed weak deexcitation y-rays




TABLE VI-1. EXPERIMENTAL EXCITATION PROBABILITIES

Excitation probabilities of the indicated levels obtained with ,016 ions incident
on thick or thin targets at various energies.

(MeV) | 42.00 | 48.26 | 48.26 | 62.10 |62.10 | 70.30 | 70.30 | 80.00
Level Thick | Thick | Thin Thick | Thin Thick | Thin Thick
186
Os
+
2 . 250 . 396 . 465
+
4 . 0121 . 0511 . 0868
+1
2 . 00439 . 0167 . 0276
+
6 . 00042 . 00292 . 00635
+
4 . 00057 . 00256 . 00592
08188
+
2 .132 .188 .354 | .403 . 433 .436 . 367
+
4 .00271 | . 0054 .0328 |.0480 |.0615 | .0790 | .0880
+|
2 .00326 | . 00566 .0238 |.0291 {.0366 | .0449 | .0553
+ i .
6 s | - .00036] . 00063} : 00142 | . 00241 | . 0040
+!
4 | eeeeem | —mmm—- .00195 | . 00473} .00592{ . 0090 | . 0117
+|
0 | —me—em | - .00022] .00046] .00055] .0015 | ---—-
Os190
+
2 .1169 .167 . 332 .399
+
4 . 00168 |.00348 . 0227 . 0452
]
2t . 00438 | . 00814 . 0308 . 0493
A R . 00057 . 00144
+1!
A [N | — . 00138 . 00248
1
Os 92
+
2 . 107 .1445 | .180 . 311 . 337 . 382
+
4 .00108 | .00249 | .00527]| .0179 |.0298 |.0327
+|
.00478 | . 00795 | .0135 | .0283 |.0395 |.0479




TABLE VI-2. EXPERIMENTAL PROBABILITIES OF OBSERVATION OF
HERETOFORE UNOBSERVED TRANSITIONS
OlGB mbarding Energy ( in MeV )
Target Transition T(; trDen g r'm:‘(;ggs
Nucleus Energy (kev) ree serp-
62.10 62.10 70. 30
Thick Thin Thick
08188 780 0.00019  ----- 0. 00030
Os190 840 0.00020  ----- 0.00043
192
Os 855 0. 00015 0. 00046 0. 00062
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of the above energies and cannot be certain that no other decay branches exist.
(In 05188 a second deexcitation path via the first excited state is, in fact, indicated
by the ¥-y data.) Thus the entries in Table VI-2 are only probabilities (again, per
backscattered ion) of observation of the relevant deexcitation transitions.

From the experimental y-ray intensities one can obtain branching ratios
for those states that decay by more than one route. Since such a ratio is independent
of excitation mechanism, it is independent of mode of detection. We present, in

Table VI-3, for the four isotopes studied, the ratios

+ +
- oF and B(E2:2 = 2')
B(E2:2'~ 0%

Ly, o+

obtained from both the Yy-particle and Y-singles measurements. The branching
ratios extracted from runs at different bombarding energies are internally consistent
to within + 4% in all cases.

Tables VI-1, 2, 3 summarize most of the quantitative information garnered.
In Chapter III we presented other information, obtained from a composite consid-
eration of all three modes of measurement, pertaining to the nature (Jﬂ) of the
levels excited and to the decay schemes of the four osmium isotopes.

The excitation probabilities from Table VI-1 are of interest in themselves
for they reveal neatly the systematics in this transition region. In order to illustrate
this more clearly we present graphs, in Fig. VI-1, of the excitation probabilities
for the various states as a function of O16 energy. For the measurements on thick
targets the O16 energies used are not the bombarding energies but rather weighted
mean energies in the target, determined separately for each state. That is, for
each state we determine, from the Winther and de Boer program calculations,
the energy at which the excitation probability for that level is the same as the
experimentally weighted average excitation probability for the thick target. It is
the energy obtained by this procedure that we call the mean energy and use in
Fig. VI-1. Due to somewhat different cutoff energies, Emin’ the mean energies
for each type of state in Os186 are not necessarily identical to the mean energies
for a similar state in the other three isotopes.

From Table VI-1 and Fig. VI-1 then, we see that, in going from Os186 to

Os192, the ground state band excitation probabilities gradually decrease in a smooth




TABLE VI-3.

EXPERIMENTAL RATIOS OF y-RAY INTENSITIES AND

B(E2) VALUES

It o B(E2:2" - 2%
Isotope Mode of Measurement —'—'—'—12#_‘ o B(E2:2+~ 0H)
186 'y—pa?ticle 1. 00 2. 66
Os
y-singles 1. 04 2.77
188 y-particle 0.862 3.54
Os
y-singles 0. 850 3.45
190 y-particle | @ -—--- -——-
Os
y-singles 0. 892 6.90
- i . 11.76
192 y-particle 0.763
Os
y-singles 0.753 11. 60

(Errors on the entries in the table are +5%.)




EXCITATION PROBABILITIES

EXPERIMENTAL EXCITATION PROBABILITIES
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manner. This is in line with what the general systematics in this region would
indicate since, aé one approaches 05192, nuclear deformation is decreasing, ground
band excitation energies are increasing, and mixing with other (e.g., 2+' or quasi-
particle) states is reducing the mutual overlap integrals and E2 transition moments
of the ground'band states. All these factors point to smaller B(E2) values and
excitation probabilities.

The only exceptions to the empirical observations above are the excitation
probabilities for the 6+ state in Os188. They are less than or equal to the analogous
numbers in Os190 whereas one would expect them to lie between those for Os190
and 0s186. The systematics is otherwise so consistent that this inconsistency in
fact makes one tend to suspect the experimental numbers for this state in Os
It will be recalled (Section III-C) that the 6+——4+ deexcitation Y¥-rays in Os188 are
masked by the' 2+'—>2+ and 44-'——4+ transitions and that extraction of the 6+——4+
intensity was indeed beset by large errors. Thus one should not lay too great
reliance on results obtained later in this chapter pertaining to the 6+ state in 05188
although the large uncertainties (+ 40%) associated with such results almost certainly
include any experimental errors. As can be seen, an error of only 20% on the low
side for the 6+ state's excitation probabilities would be sufficient to remove the
apparent inconsistency noted above with this region's systematics.

Continuing our comments on systematics, we observe that the 2+' state

excitation probability increases from Os186 to 08190, 192.

This is consistent
with that state's gradual decrease in energy and with its transformation from a
" y-vibrational "' state weakly coupled to the 0+ and 2+ states to a '""two phonon"
state strongly coupled to the 2+ state. The 4+' state, on the other hand, should

186, 188, 190, 192 since it changes

be successively less readily populated in Os
in structure from an ordinary ?y-band member to a complicated state probably
approximated somewhat by a 'three phonon' excitation not directly coupled at
all to the 0+ or 2+ states. This trend is indeed evidenced by the data and in fact
no 4+' excitation is observed at all in Os192.

This feature in the latter nucleus is nicely complemented by the corresponding
lack of observation of any 6+ state excitation. If a 6+ level does exist in Os192 it
can hardly be expected to be a good ground state rotational band member any more

+!
than the 4 level has remained a pure %-vibrational state. Rather, again like
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+!
the 4 state, it is approaching in nature a structure somewhat like 'a three phonon "
cones + +
excitation. The analogous decrease in excitation probabilities of the 6 and 4

states in 05186’ 188, 190

and the sudden lack of Aany observed excitation of either
in Os192 is thus consistent with the view that both states are undergoing similar
transformations in this region.

The branching ratios of Table VI-3 can also be considered in the light of
general trends in the osmium nuclei. The ratio is 2. 66 for Os186 and 11. 76 for
Os192 with a smooth increase in between. As the vibrational limit is being approached
in Os192 the 2+' state is becoming weakly coupled to the ground state and more
strongly coupled (through a quadrupole phonon excitation) to the 2+ state. Thus a
large branching ratio is consistent (recall eq. II-6) in 08192. On the other hand,
in a rotational nucleus, the intrinsic matrix elements connecting the 2+‘ state to
the 2+ and 0+ states are identical and the branching ratio is determined only by
'""geometric" details, i.e., mathematically, by a ratio (= 1. 43) of Clebsch-Gordan
coefficients (see eq. II-15).

A more quantitative consideration of the applicability of the phenomenological
models (the rotational model, in particylar) to the osmium nuclei can also be
approached via the model— dependent multiple Coulomb excitation theories outlined
in Section II-C. The Alder64 theory has been applied to the calculation of the
excitation probabilities for the members of the ground state band.

Since the best way to measure the required input numbers, B(E2:O+——2+) ,
in the Alder theory is not with high energy O16 ions but with lower energy protons
or alpha particles or by lifetime measurements, the B(E2:O+——2+) values used in

58, 70, 71, 116 ) otfective

these calculations have been taken from the literature
moment of inertia (see Section V-D) for each state has been used to mock up the

energy difference AE 2+ + so that the latter correctly reproduces the larger

0
and more important energy difference AE The results of these calcu-

lations are contained in Table VI-4 which ;iveg tliz calculated excitation probabil-
ities for the four isotopes at the various bombarding energies on both thick and
thin targets. Fig. VI-2 is a plot of the ratio of experimental to calculated proba-
bilities as a function of '"mean" O16 energy (the manner in which to construe

"mean" is described above). In interpreting this figure one obtains a somewhat

clearer picture of the applicability of the rotational model to the ground band states




TABLE VI-4. THEORETICAL GROUND STATE BAND EXCITATION PROBABILITIES
CALCULATED ACCORDING TO ALDER'S MULTIPLE COULOMB
EXCITATION THEORY

This table is to be compared with Table VI-1. Therefore, entries are inserted only

for those cases in which corresponding results were measured and inserted in
Table VI-1, '

E(MeV) | 42.00 48. 26 48. 26 62.10 62.10 70. 30
L Thick Thick Thin Thick Thin Thick
evel . , ' ‘
0186
.
2 0.236 0.414 0. 482
+
4 0. 00111 0. 0510 0. 0885
+
6 0. 00229 0. 00593
0188
2 | 0.144 0.188 0.375 | 0.440 0.458
+
4 0.00274 | 0.00632 0.0371 | 0.0586 | 0.0716
A 0.00138| 0.00266| 0.00416
0190
+
2 0.110 0.153 0.322 0. 409
4t | o0.00122 | 0.00377 0. 0255 0. 0506
A R 0. 00080 0. 00244
0192
2% 1 0.0921 0.128 0.179 0.285 | 0.350 0.371
4* | 0.00066 | 0.00250 | 0.00597| o0.0190 | o0.0312 0. 0386




RATIO: EXPERIMENTAL /7 CALCULATED PROBABILITIES

COMPARISON OF EXPERIMENTAL GROUND
STATE BAND EXCITATION PROBABILITIES

WITH THOSE CALCULATED USING ALDER'S
THEORY OF MULTIPLE COULOMB
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if the deviations of the ratios for the 4+ and 6:'- states are taken as those that would
result were the B(E2:0+—>2+) values adjusted to normalize the 2+ state ratios to
1.0. In any case, it is clear that the results are actually quite close to unity, the
ideal case for a pure rotor, with mildly increasing deviations from this value as the
transition region is traversed.

One'would, of course, expect fairly good agreement for the first excited
state sin‘ce t’;he experimental value for the quantity B(E2:0+ — 2+) is actually used
in the calculations. Thus, if the predicted 4+, 6+ state excitation probabilities
are given evén remotely correctly, the virtual depopulation (only = 15% at most
anyway) of the 2+ state will be decently approximated and the final 2+ excitation
probabilities accurately predicted. This is indeed seen to be the case. However,
if the rotational model in these nuclei is not accurate then one would expect pop-
ulations of the higher levels to be incorrectly given, Deviations toward the vibrational
(or spherical) limit would weaken the coupling among the ground state band members.
Thus the excitation probabilities for 4+ and 6+ states, calculated as they are in the
rotational limit, should exceed the experimental or, at least the ratios for these
states should be lower than for the 2+ state. In almost all cases this is so, as
Fig. VI-2 shows.

Since one cannot obtain B(E2) values from this approach we cannot go
further into a comparison with the rotational model now but must await the extraction
of the full set of B(E2) values obtained by using the Winther and de Boer program.
We can, however, apply the Lutken and Winther theory65 to obtain the quantities
B(E2:O+ — 2+'). By comparing the results so obtained, as a function of energy,
with the model-independent results we may gain some insight into the accuracy
with which the theory accounts for the redistribution of ¥-band population, and
thereby into the degree to which the y-band is structured as a pure rotational band.
Performance of this admittedly only semi-quantitative comparison for the four
osmium isotopes will also provide a measure of the accuracy of the Lutken and
Winther technique for extraction of B(E2;O+ ——2+‘) values in a variety of nuclear
si‘tuati-ons.

Table VI-5 presents the calculated B(E2:0+ ——2+') values for the four nuclei
f6r bombarding energies of 48. 26, 62: 10 and 70. 30 MeV. A clear trend is evidenced

in that the B(E2) values increase considerably with higher beam energies. From a




+
TABLE VI-5, B(E2:0 -2 ). VALUES EXTRACTED FROM THE DATA USING
THE MODEL DEPENDENT LUTKEN AND WINTHER ANALYSIS

BéEZ) values listed were obtained from thick target measurements. Units are
e" x10 "em™,

Bombarding O16 Energy (MeV)

Isotope

48. 26 62.10 70.30
Os186 0.125 0.138 0.140
05188 0.134 0.150 0.151
Os190 0.150 0.169 0.177

|

Os 92 0.121 0.136 0.152
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comparison with the results obtained later in this chapter (Table VI-10) it is apparent
that the highest energy Lutken and Winther results are the best. This is to be
expected since, at higher projectile energies, the £ = 0 approximation for all

/2)

levels within each rotational band is most nearly satisfied (recall: { « AE/E3
It will also be noted that the variation in B(E2) values obtained as a funcﬁorI of
energy gradually decreases from Os192 to Os186, that is, as the rotational band
states become more closely spaced and as the & = 0 approximation becomes more
accurate even at lower beam energies. In all the nuclei, though, the results even
at 70, 30 MeV deviate considerably from the model-independent calculations, indicating,
as will be confirmed later in this chapter, that the population of lthe 2+‘ state via
Coulomb excitation is not well described by a reaction mechanism that treats this
state as the leading member of a pure rotational band.

We now consider the B(E2) values for excitation of the 2+, 4+ and 2+' states
obtained from first and second order perturbation theory. These are given in
Table VI-6. The values given are those calculated at lower beam energies since
for higher projectile energies the perturbation expansion to second order is a
poor approximation. This is even true for states weakly excited (2+', 4:+ levels)
by second order processes since the excitation of the intermediate first 2+ state
is incorporated into the higher order expressions and is incorrectly calculated.
First and second order perturbation theory further overestimates excitation
probabilities because it neglects virtual depopulation of 2+, 4:+ and 2+' states.
The effects of this neglect are, again, smallest at lower beam energies and in
fact, in the 48.26 and 42. 00 MeV cases, are negligible. This error can, however,
be approximately offset to some degree at any energy by adding to the experimental
excitation probability for the state of interest (e.g., a 4+ state) the excitation
probabilities of higher states (e.g., 6+ levels) predominantely populated via the
lower level. This procedure has been incorporated into all the perturbation
calculations performed. (These calculations neglect the effects of finite excited
state quadrupole moments (see below) which, though generally small, may involve
contributions of lower than second order.)

In the calculations of the excitation probabilities for the 2+' state by per-

turbation theory the unknown sign of the interference term (eqs. V-24, 25) introduces




TABLE VI-6. B(E2) VALUES EXTRACTED USING FIRST AND SECOND ORDER

PERTURBATION THEORY

48

Entries are in units of 2 x 10~ cm4.

lated using an overall + sign for the interference term. See text and Table VI-7
for more details on this matter.

+
The B(E2:0 — 2 ) values were calcu-

Isotope B(E2:0 '~ 27) B(E2:2 - 41 B(E2:0 = 2")
0588 3.10 1.77 0.193
0s!%8 2,58 1.36 0. 201
0s'%? 2.38 1. 09 0. 225
0s' 2 2.11 0.938 0.178
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an uncertainty ranging from 7% in Os192 to 25% in Os186. However, the sign of
this term can in principle be determined by demanding that the B(E2) values
extracted be constant as a function of beam energy.

In practice, this is difficult for three reasons. First the interference terms
are not large (< 15%, except for 05186). Séé‘dﬁﬁly, their relative size (compared
to "direct " plus 'double " terms) remain almost precisely constant as a function
of beam energy. Thirdly, perturbation theory is invalid at the higher ener gies
anyway, thereby reducing the number of validly calculable quantities with Which to
test for constancy of the extracted matrix elements. Despite the first and second
points the appropriate calculations were carried out. The third problem was
partially obv1ated by slightly modifying the perturbation calculation at the h1gher
energies. Th1s was done by using in eq. V-25, not the correct B(E2: 0 -2 ) but
an incorrect one obtained from a first order perturbation calculation of the 2
level's excitation at this energy. Since perturbation theory overestimates the
excitation probability at higher energies, the B(E2) value needed to give the
experimental 2+ excitation probability will be lower than the correct one. Use of
this lower value in V-25 then prevents a similar overestimate of that portion
of the excitation route in the second order calculation of the 2+' state's excitation
probability. (This technique gives results very similar to those obtained with the

use of P +/ (1 + P + ) for the perturbation probability instead of P_+.)

Calculatmns using these procedures result in two sets of B(E2: 0+ ——22+ ) values;
one for each’'sign of the interference term. Neither set is exactly constant but
that corresponding to an overall plus sign for the interference term is favored by
the computations. The B(E2:O+ —-2+') values obtained at 48. 26 and 70. 30 MeV for
each sign of the interference term are listed in Table VI-7. The plus sign is also
consistent with the rotational model which predicts equal signs for the reduced
matrix elements < 0+ I M(E2) || 2+' > and < 2° I ME2) I 2+' > (and a relative
plus sign between these two quantities leads in turn to a plus sign for the interference
term70).

A final comment on the perturbation theory B(E2) values is that in Os19
they should be in better agreement with the results of the “nweorrect " Winther and

de Boer calculations than is the case in the other nuclei. (This is due to the combined




1
TABLE VI-7, B(E2:0 - 2 ) VALUES OBTAINED FROM PERTURBATION THEORY
FOR EACH SIGN OF THE INTERFERENCE TERM

- 16 -
Units are e2 x10 48cm4. Results are given for 48.26 and 70.30 MeV O 6 ions

on thick osmium targets.

Isotope ;8. 26 MeV 70.30 MeV

+ - + -
05186 0.193 0.280 0.177 0.244
08188 0.201 0. 265 0.192 0.244
08190 0. 225 0.278 0. 215 0. 254
0522 6. 178 0.199 ~0.168 0.183
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reasons of higher excitation energy of the 2+ state and generally weaker coupling
among all states, resulting in lower excitation probabilities and less virtual de-
population of low-lying levels via higher order processes.) A detailed comparison
of Tables VI-6 and VI-10 does in fact bear out this expectation. Actually, though,
in all four nuclei and at lower beam energies, it must be stressed that the results
of perturbation theory are in general remarkably close to the 'correct" results
(obtained using eqs. II-68) for those states that can be reached by first or second
order excitations. As expected, however, they are generally lower than the more
accurate results,

In order to delve further into the structure of the osmium region we now
need to consider the complete calculation of all the B(E2) values through the solution
of the coupled Schrodinger eqs. II-68. These considerations will allow us finally
to extract B(E2) values for excitation of .the 2+, 4+ and 2+' levels that are no longer
imbued with large uncertainties stemming from model assumptions or from poor
conversion of perturbation expansions. They will also now allow us to obtain
B(E2) values relating to any state observed.

Determination of the best set of matrix elements using the code61 for the
solution of eqs. II-68 is not a priori a trivial task. In all nuclei but 03192 there
are at least six states to be included in the calculations. Thus, in principle, the
code must be supplied with 36 or more matrix elements none of which are initially
known in either magnitude or sign. Extensive simplifications are, however,
possible.

First, many matrix elements can be arbitrarily set equal to zero. Thus,
for example, the quantity B(E2:0+ ——4+) is a contradiction since the two levels cannot
be directly coupled via E2 radiation. Thus immediately we have MO+ - 4+ = 0.
There are many such cases. Secondly, the matrix M is symmetric and thus its
size is effectively cut by nearly a factor of two. Thirdly, and most importantly,
the magnitudes and relative magnitudes of many matrix elements are approximately
known from other sources such as perturbation theory calculations and experimental
branching ratios.

Still unknown, however, are the signs of all the matrix elements and the

magnitudes of the diagonal one (quadrupole moments) and of those pertaining
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to states not susceptible at all to practical analysis via perturbation theory.

If the signs of the matrix elements are considered as arbitrary one has a
totally preposterous number of parameters to vary. The number of different sign
combinations can be extremely large and one would have to attempt to fit the data
with each choice of relative signs. Then comparison of all these myriad fits would
needs be made to determine the best overall set of matrix elements. Fortunately,
this problem can be nearly totally avoided with what is felt to be, in the osmium
nuclei at least, an excellent assumption. The assumption is that the relative
signs of the matrix elements be those given by the rotational model. This does not
determine all relative signs but it reduces the number of choices from over one
hundred down to less than four.

The assumption merits several comments. It is not considered to constitute
a transformation at all of the calculation into the model-dependent variety. The
main reason is that,while the absolute magnitudes of the matrix elements may
deviate sharply from the rotational model, the relative signs will still be correctly
given by that model. Were this not true it is hard to see how even weak vestiges
of rotational structure could remain for the implication would be that the wave
functions would be drastically altered from the rotational form. Yet, in the

186, 188, 190, rotational patterns are clearly

osmium nuclei, and especially in Os
evident. For example, the ground state rotational band structure persists at least
up through the 8+ level and, in the <Yy-band, states past the 4+' level are also known,
The argument in Os192 is twofold. First, it is certainly true that considerable
rotational structure is still evident, at least in the ground band. Secondly, if one
considers the trends in the matrix elements determined, on the rotational assump-

186, 188, 190 it becomes quite unlikely that an abrupt change in sign

tion, in Os
would occur for Os192 although such a possibility is not thereby utterly excluded.
Even if the rotational assumption concerning signs were not made, it turns
out that observable effects due to sign changes occur only in isolated cases.
Virtually the only situation in which the effect is serious is in the excitation of the
2+' states, and as noted earlier, the rotational model's predictions here are in
fact probably also favored by the model-independent perturbation theory analysis

of the interference term. Furthermore, the size of the effects of relative sign
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changes in the excitation of the 2+' states is directly related to the magnitude of
that interference term. Thus, in the one nucleus (Oslgz) in which certain doubts
might be raised about the validity of the rotational model signs, the effect is the
smallest, being only 5-7% in size.

Adopting then this assumption, the only uncertainties in signs are the
absolute values of any one sign for a matrix element between bands and of the sign
of one matrix element within each band. It turns out that the resulting excitation
probabilities are not at all a function of the former sign: either choice gives
identical results. For the signs within the two bands one can test the four combi-
nations possible. Again no effects are observed, mainly due to the fact that within
a band there-are no interference terms to consider. Since no theory or model of
this region predicts oblate shape we have assumed the four nuclei to be prolate
in both ground and y-bands. This is sufficient to fix the signs of all intraband
matrix elements.

At this point the only matrix elements whose magnitudes are completely
unknown are those for the 6+, 4" and O+' (if any) states and those related to the
quadrupole moments of the various levels. Asa starting point for the former,
one can assume rotational model results and probe from there. For the 4+' state
experimental branching ratios are known so that the existence of several excitation
routes does not.essentially complicate the analysis.

The matrix elements pertaining to the nuclear quadrupole moments cannot,
however, be obtained by fitting the data, as will be seen from the discussion that
follows. In a perturbation expansion analysis, the main effect of a finite quadrupole
moment, Qf, in the excitation of the state f from an initial state i arises in an
interference term between first and second order contributions. The relative size

1, 2)

1) .
of the interference term, P compared to the first order term, P( )f’ is

. 56 i—f—f i—
given by

a, 2) :

2 A 1 '
1—f— K

p=—1 = . zl n AE; My K(&p O VI-1

p® 2 (1+ 1)

i—1 A,
2

A

1
j 1
where A E:is in MeV and where K is defined in reference 56. A Eif =+ A ) AEif'
t
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Mff =< fIIM(E2) Il £> is proportional to the quadrupole moment of state f. Nu-

merically, in osmium, it turns out that

p=-.8"1 AE.,M_ = .OlAlAEfof VI-2

Thus pis proportional to the magnitude and sign of the quadrupole moment, to the
excitation energy of fhe state f and to the mass of the projectile. If only one projectile
is used, however, it is extremely difficult to extract accurate values of Qf since
other matrix elements involved in the excitation would then need to be known very
accurately. If however, several different projectiles are employed, extraction of
Qf is greatly facilitated. Only O16 beams were used here, though. If '"'reasonable "
values of Mff are used, pis found to vary, in Os, from .03-.20 for the various
states. Thus percentage errors of these magnitudes could arise if one has no
knowledge at all of the Qf‘s. However, this situation is not encountered here for,
despite the fact that the Qf's were not actually measured, other results indicate
very plausible approximate values for them. Using these values, estimated
possible errors from this source are reduced to acceptable levels ( < 3%) for all

186, 188 190, 192, In 05192 it is possible that

states in Os and for most states in Os
an error from this source of + 5% may remain for the 2" staters B(E2) values.

The technique for delimitation of the possible values for the quadrupole
moments rests on the fact that B(E2) values for the low-lying states are, in any
case, known to within + 15% without any knowledge at all of the Qf's. Thus a com-
parison can be made of the experimental B(E2) values with the predictions of the
calculations of Kumar and Baranger13 and the rotational model. The predictions
of the models are related in one of two ways: either they are nearly identical in
which case they also predict similar values for the Qf‘s or they differ widely in
which case the 15% errors in the experimental B(E2) values (due to lack of knowledge
of the Qf's) makes no difference in the general comparison. In the second case
it turns out that the experimental results tend to lie in between the two models and
SO Qf for each state can be chosen in accordance with this general comparison. In
light of the comparisons to be made below, it would be very surprising and unlikely

if any of the Qf were to lie outside the range determined in this way by the two models.

Thus, in summary, in the extraction of B(E2) values from the data with the Winther
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and de Boer code61 values for the diagonal matrix elements were used that implied
quadrupole moments situated in magnitude relative to the rotational model and the
Kumar and Baranger predictions in the same way as were the other matrix elements
and branching ratios for the low-lying states. Errors remaining due to this source
are included in the + uncertainties associated below with the tabulated experimentally
determined B(E2) values. In addition, in Table VI-8, we present a listing of the
percent changes in various excitation probabilities were the quadrupole moments

used in these calculations here to be altered (increased or decreased) by 30%.

In OS186, 188, 190

a change of this size almost certainly leads to an overestimate
of the errors in the quadrupole moments actually employed. In Os192 a + 30%
uncertainty on the quadrupole moments is probably realistic.

With these considerations in mind, then, the initial input matrix elements
consist of '""reasonably " chosen diagonal moments, dynamic moments connecting
the ground state, 2+, 4+ and 2+' levels as obtained from a perturbation analysis
and from experimental branching ratios and rough (e. g., rotational model) esti-
mates of other dynamic moments for higher-lying states. With these one obtains
excitation probabilities for all states for all bombarding conditions. Comparison
of these with their experimental counterparts leads to a new, hopefully improved,
set. This process of successive approximations is repeated until an 'acceptable "
fit to the experimental results is obtained.

Five comments are relevant here. First, one must attempt to fit all
observed levels of a given- nucleus at once. Otherwise later inclusion of higher
levels would upset prior agreement for the initial states. Secondly, it is not
generally sufficient to consider only one bombarding energy at a time. It is
entirely possible, in some cases, to fit observed excitation probabilities at one
energy but not at another, or to fit experimental results at one energy with one
set of matrix elements and at another energy with another set.

Thirdly, it is not-necessary to use the thick target computer program for
each new set of matrix elements. Since that program prints out all excitation
probabilities at each energy, all one needs to do is estimate the percentage
change required in certain matrix elements, perform the new calculations at some

intermediate energy (largely arbitrary) and determine if the excitation probabilities




TABLE VI-8. DEPENDENCE OF EXCITATION PROBABILITIES
ON QUADRUPOLE MOMENTS

Percent changes in the excitation probabilities listed in Table VI-1I, and used in
obtaining Table VI-10, that result for + and - 30% changes in all quadrupole
moments. The results are given for two incident O 6 energies and pertain to
0s!90 although similar percent variations were obtained in analogous calculations
on the other osmium isotopes. The Winther and de-Boer code was used in
obtaining the results. Entries are given to the nearest 0.5%.

Level 63. 30 MeV 43.30 MeV
+30% -30% +30% -30%

ot 2.0 2.0 2.0 1.0
+

4 2.0 2.0 3.0 2.0

6 7.0 5.0 5.5 3.5
+

2 3.0 1.5 — —-
41

4 1.5 0.5 _— —
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do change by the desired percentages at this energy. If they do, they one generally
has an excellent approximation to the changes that will occur in the thick target
results. Thus one can probe with the inexpensive thin target program, returning
occasionally to the thick target version for confirmation.

Fourthly, due to the intricate coupling of the amplitudes in eqs. II-68, it is
not easily practicable to ''search ' automatically with many sets of matrix elements.
For example, it might turn out that a 2+‘ state's excitation probabilities are better
fit to the data if the matrix element connecting the 2+ and 4+ levels is altered. The
changes one makes in matrix elements in attempting to fit the data are frequently
dictated by composite considerations of the relative slopes (with energy) of theo-
retical and experimental excitation probabilities, the '"confidence ' one has in
certain experimental numbers relative to others and the degree to which one can
tolerate disagreement with the data for isolated prob abilities for the sake of
better overall agreement in other cases.

Finally, a comment on uniqueness: provided one fits '"satisfactorily ' the
P 's for all levels at all energies and provided branching ratios are known for
allangels excitable by more than one route, the final set of matrix elements obtained
can be considered unique. This uniqueness is, strictly speaking, obtained only for
the specific choice of relative signs used unless one has tested other such combina-
tions or has reasonably sound arguments in favor of a given set. The uniqueness is
also subject to the small errors involved if quadrupole mc;ments were not measured,.
Of course, one must also assess the accuracy of the experimental results in
placing + errors on the final matrix elements.

One additional comment for the experimentalist is appropriate here. For
guidance in the initial choice of matrix elements, and for accuracy in determining
branching ratios, it is often extremely beneficial to have run at least at one very
low beam energy. This is especially true if transitions from higher states are
nearly degenerate with any deexcitations of \lower-lying levels.

In the computations leading to the results now to be cited the number of
magnetic substates considered and the accuracy control in the code were set so

+

+
that errors from these sources in the excitation probabilities for the 2 , 4 and
1 1

+ + o+ 4!
2 states were less than 1% and for the 6 , 4 and 0 states were less than 3%.
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This criterion ensures that calculational errors are in all cases much less than
other sources of uncertainty.

The same criterion was observed in determining the number of angles at
which calculations were necessary. As it turned out, computations at one mean
angle, and generally in the M = 0 substate only, were sufficient. Table VI-9
tabulates the percentage changes in the excitation probabilities of the states of
the intermediate nucleus 03188 that result if either the M = + 1, + 2 substates
are included or the mean angle is altered by 5° toward the forward direction.
The latter change can be taken as a considerable overestimate of the errors
involved in assuming one mean angle. (See discussion in Section II-C)

Having considered in some detail now the implementation and accuracy of
our solutions to eqs. II-68 we can finally present the results obtained. In Table
VI-10 are given all the B(E2) values derived from the present experiments. The
quantities B(E2:2+' — 4+‘) and B(E2:4+ — 4+‘) actually could not be determined
""internally' since the relevant y-ray transitions were not observed. Rather,
known branching ratios72 were used together with the observed 4.‘-'—»2+ y-ray
intensities to determine the actual excitation probabilities of the 4+' state and
the corresponding B(E2) values just mentioned.

In order to assess the accuracy with which the listed B(E2) values allow
one to fit the data, Table VI-1l gives the theoretical excitation probabilities
obtained with this set of B(E2) values. The entries in this table should be compared
with those of Table VI-1. In almost all cases the agreeement, especially as a
function of energy, is impressive. This is revealed in Fig. VI-3 in which the
ratios of the experimental to theoretical excitatinn probabilities are plotted. In
most cases the ratio is equal to unity to well within 5% and the error bars on the
ratio (not shown: see caption) almost invariably include 1.0 within their ranges.
Since the experimental errors for the excitation probabilities of the 6Jr and 4+'
states at the lowest energies at which they are observed are extremely large one
should not consider the deviations from unity of 20-30% for these few cases as indi-
cating poor agreement. For these states, excitation probabilities at the higher
bombarding energies should be given considerably heavier '"weightings' in

determining the quality of the fits. Table VI-10 thus summarizes the quantitative



TABLE VI-9. DEPENDENCE OF EXCITATION PROBABILITIES ON
BACKSCATTERING ANGLE AND MAGNETIC SUBSTATE
POPULATION

Excitation probabilities were calculated with the Winther-deBoer code that included
the M = +1, + 2 magnetic substates. Analogous calculations were also performed
for 6 =160°. The results were compared with the excitation probabilities calculated
assuming M = 0 only and assuming 6 = 165°, respectively. The percentage

changes that were found for the excitation probabilities of various levels are

given below. The calculations were performed for Os 88 but analogous results

are obtained in the other osmium nuclei. Entries are given to the nearest 0.5%.

Level Percent Changes in Excitation Probabilities
M=+1, +2 6 = 160 relative to
relative to 6 =165
M=0

+

2 0.0 0.0

4+ 0.0 1.0

6+ 1.5 3.0

1

2" 0.0 1.0

+!

4 1.0 1.5




TABLE VI-10. FINAL EXPERIMENTAL B(E2) VALUES

The B(EZ2) values listed here were obtained by the full, model-independent solution
of the Schrodinger eqs. II-68 using both thick and thin target versions of the

Winther - de Boer-computer code to fit theoretical to experimental excitation
probabilities as a function of O16 energy. Units are e2 x 10748cm*. (For discussion
of errors, see Section IV-F).

Reduced

Transition

Probability Os186 . OS188 C)8190 . Os192
+ _+

B(E2:0 - 2) 3.42+.55 2.80+.56 2.54+.35 2.37+.33
+ 4+

B(E2:2 =4 ) 1.79+. 21 1.42+.17 1.16+.14 .950+.110
+ +

B(E2:4 - 6 ) 1. 68+. 34 .557+. 222 . 840+.17 | —mmmme-
+ _+

B(E2:0 =2 ) . 231+, 028 . 245+, 029 . 243+. 029 .180+. 021
+ _#

B(E2:2 ~2 ) .123+. 015 .173+. 021 .335+.040 | .420+. 050
+ o+ ,

B(E2:2 =4 ) . 0289+. 0058 .0205+. 0041 .00699+. 0021 ---------
+

B(E2:4 4 ) .147+. 029 .163+. 032 .149+.045 | ---------
+1 1

B(E2:2 -4 ) 1.15+. 23 . 899+.180 .338+.100 |} ---------

‘ .
BE2:2~0") | oo T L G [ R ———




TABLE VI-II. THEORETICAL EXCITATION PROBABILITIES

Excitation probabilities calculated with the Winther-de Boer code for those matrix
elements that yield the B(E2) values given in Table VI-10. The notation is the same
as that of Table VI-1 to which these entries should be compared .(see also Fig. VI-3).
The experimental results for 6ions of 70.30 MeV on a thin 05188 target and of 80.00
MeV on a thick Os188 target are not reliable since the Coulomb barrier is almost ex-
ceeded and profuse nuclear reactions occur in addition to Coulomb excitation. The
corresponding theoretical entries are, therefore, omitted in the table below.

E(MeV) 42.00 | 48.26 48.26 62.10 62.10 | 70.30
Level Thick Thick Thin Thick | Thin Thick
0186
2" 244 417 .475
4 . 0ll4 0515 . 0879
2" . 00445 L0170 . 0263
6 00240 . 00643
4" 00261 . 00608
0c189
2" 135 1180 354 422 432
4 00261 | .00544 0322 0524 | .0630
2" .00319 | .00585 0232 .0336 | .0373
6 .000441 | .00090 | .00142
4" .00228 | .00430 | .0058l
0" .000224| .00042 | .000546
0190
2" 116 157 .33l 41l
4 0016l . 00348 0226 0448
2" .00443 | .o078s L0311 0512
6 . 000450 . 00147
na 00100 . 00263
05192 '
* 104 143 .202 311 377 .394
4" 00111 .00248 | 0052 L0172 0287 0355
! .00446 | .oo771 | .0i34 0300 0438 . 0505




RATIO : EXPERIMENTAL /7 CALCULATED PROBABILITIES

1.4 —

RATIO OF EXPERIMENTAL EXCITATION PROBABILITIES

TO THOSE CALCULATED FROM THE COUPLED
SCHRODINGER EQUATIONS II - 68

(The calculated excitation probabilities listed in Table Vi-11 and used to ebmin
the ratios here were calculated assuming the B(E2) values of Table VI-18. The
accuracy of those B(E2) values is thus measured in part by the degree to which
the ratios here approximate unity. For clarity error bare are omttted: the
errors are 1-3% greater than those indicated in Fig. VI-1,)
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information on transition rates obtained in these experiments. We now turn to a
comparison of these quantities (essentially absolute squares of nuclear matrix
elements) with various nuclear models. '
Physically, the most revealing approach is afforded by simultaneous compar-
ison with the predictions of the rotational model and of the calculations of Kumar
and Baranger. The latter have calculated, to date, 'B(E2) values involving the
2+, 4+, 2+' and O+' excited states but not involving the 4+' and 6+ states. Absolute
B(E2) values in the former model are obtained from the quantity B(E2:O+——2+) which
in turn specifies the intrinsic quadrupole moment by eq. II-13 and thus allows
calculation of the other ground band B(E2) values. Assumption of the same quad-
rupole moment for the y-band permits evaluation of B(E2) values for this band
as well. (The Kumar and Baranger calculations also predict approximately equal
quadrupole moments for the two bands). The B(E2:2+——2+‘) values are obtained
in the rotational model by using eq. II-15 and the experimentally determined
B(E2:O+——2+') values. Thus three parameters are needed for each nucleus to
specify the model's predictions. Table VI—12119 presents the overall comparison
of the three sets of B(E2) values. The experimental (exp.) numbers included are
simply repeated for convenience from Table VI-10.
Fig. VI-4 illustrates in graphical form some of the comparisons of Table
VI-12. Several conclusions are clear. Therotational model is quite accurate
for the low-lying ground state band members. Thus, given the quantity B(E2:0+—-2+)
the B(E2:2+——4+) value is impressively predicted. In addition, for 05186’ 188, 190, |
the B(E2:4+—~6+) values are not badly accounted for although the experimental fall-
off of these numbers near Os192 is not fully reproduced. In 08192, in fact, no 6+
excitation is observed but yet the rotational model still predicts a fairly large
matrix element for its excitation. This generally good agreement for the ground
state band, however, explains in part why the Alder calculations (see Fig. VI-2)
were able to account so nicely for the ground state band excitation probabilities.
The deviations from the rotational model are in such a direction as to imply,
physically, that the rotational character of the ground band wave functions disappears
more rapidly for 4+ and (especially) 6+ states than it does for the 2+ level. This is,

of course, reasonable since effects such as mixing with single particle (or quasi-




TABLE VI-12. COMPARISON OF EXPERIMENTAL B(E2) VALUES WITH THE
ROTATIONAL MODEL AND WITH THE CALCULATIONS OF
KUMAR AND BARANGER

B(E2:Ji — J ) values (Exp.) obtained from the present work are compared with
the predictions, where relevant or calculable, of the rotational model (R. M.)
and with the theory of Kumar and Baranger (K + B). Units are e 10-48cm4.

Iy~ Jg

Isotope + + + o+ + o+ + 4 + + + 4
0-2" . 27=4 4" -6 0'~2 27=2 27- 4 27=0
Exp. | 3.42 1.79 1.68 0, 231 0.123 0.0289  -——--

186
Os K+B | 2.95 1. 632 S 0.190 0.256 ————- 0. 0316
R.M.| -—--- 1.76 1.55 ———- 0.0661  0.0495  ——---
Exp. | 2.80 1,42 0.557  0.245 . 0.173 0. 0205 0. 0061

188
Os K+B | 2.731 1.509 ——— 0.184 0.403  —-—-ev 0. 022
R.M.| —-—- 1. 44 1.27 —- 0.0700  0.0525  —--nn
Exp. | 2.54 1.16 0.840  0.243 0.335 0.00699  --——-

190
Os K+B | 2.595 1,429 ——- 0.143 0.539  ~——-en 0. 016
R.M.| ---- 1.31 1.16 ——- 0.695 0.0520  —--m-
Exp. | 2.37 0.950  ~——- 0.180 0.420  ~mcoom  —mmm-

192
Os K+B | 2.576 1.405 . -—— 0. 035 0.748  —-—om- 0. 008
R.M.| ---- 1.22 1.08 —- 0.515 0.0386  -—-m-
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particle) states, centrifugal stretching, CAP forces and the like are more impor-
tant for the higher-lying states with larger angular momenta.

For the 4+ levels the Kumar and Baranger results are likewise in satis-
factory accord with experiment although they are not noticeably better than those
of the rotational model. Of course, the former calculations also predict absolute
numbers for the B(E2:O+—-2+) values that are extremely close to the measured
results and, furthermore, require no parameter fitting for each nucleus.

The real difference between the two models arises when one considers
their respective predictions for interband matrix elements. Here, the rotational
model, as expected, is totally unable to account for the sharp increase in the
B(E2:2+——2+') values as the viiorational limit is approached (compare eqs. II-6, 15).

186, 188

Moreover, even in Os , absolute values for this quantity differ from the

experimental results by factors of two or more. This failure to account for the

1
86, 188, now makes it reasonable

properties of the ?¥-band states, even in Os
that the Lutken and Winther analysis, discussed above, should have given B(E2)

values for the transition 0+——2+' that differed seriously from model-independentresults.
The rotational model likewise failsto account for the experimental B(E2:2t-4+') values.

The Kumar and Baranger theory, on the other hand, accurately predicts
not only the region in which the transition to spherical nuclei occurs but also the
magnitude of the transition in terms of its effects on reduced transition probabilities.
Fig. VI-4 and Table VI-12 show, though, that this theory predicts too sharp a
transformation to vibrational character in 08192' However, the trend of interband
B(E2) values, in the four isotopes, is correctly tracked by the theory and some
slight variation in the input parameters might well be able to reduce the specific
numerical differences with experiment (see the next chapter for further discussion
of this.),

To summarize thus far, the microscopic calculations of Kumar and Baranger
are in generally impressive agreement with experiment in all four nuclei. With no
parameter fitting specific to each nucleus they are equally as good as the rotational
model for the ground state band and significantly better for other states. The trends

in the systematics are qualitatively reproduced. Large numerical disagreements

with experiment occur only in Os192 and may perhaps be rectified. Furthermore,
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though it has not been stressed here, a complete comparison of their theory with
experiment shows that it also correctly predicts the energies of the 4+ and 2+'
levels in all four Os nuclei to within 50 kev. In addition, experimental ground
state band moments of inertia are quite accurately reproduced.

Before considering two other predictions of the Kumar and Baranger
theory, it is well to consider what its success in this region implies as to the
physical structure of the osmium isotopes. The theory calculates both potential
wells and wave functions and these are illustrated (the latter in contour plots)

186, 188

in detail in reference 13. We conclude, then, that Os are prolate in their

ground st ates with a potential minimum of a few hundred kev. A second,shallower

190, 192 the minima are both

potential minimum exists on the oblate side. In Os
very shallow ( <150 kev) and there is only slight preference for prolate over oblate
shapes. In these two nuclei the zero point motion in the ground state actually carries
the nucleus through many configurations. The mean or time-averaged condition
is thus not far from the spherical and so properties analogous to vibrational nuclei
reasonably arise. However, the slight preference for a non-spherical equilibrium
configuration permits finite quadrupole moments to remainlzz. Finally, as regards
deformation, the equilibrium value of B is predicted to gradually decrease from
Os186 to Os192.

Considering now the contour plots of the wave functions of reference 13
we see that the latter in general are quite spread out in the B-% plane. Again,
maxima are meager. A marginal preference for slightly asymmetric shapes in

the ground state is found in Os190 and Os192. All four nuclei are extremely soft

190, 192

to Y vibrations although this tendency is the greatest in Os Thus we

+
expect (and get) low-lying 'y-vibrational excitations with the 2 state decreasing

in energy as Os192 is approached.

The wave functions for the first excited 2+ states have both K=0and K = 2
186, 188 190, 192

components although in Os the former dominates. For Os , however,
the two co mponents have nearly equal magnitudes and the wave functions are not

at all localized. This results in a structure similar to that for a one phonon harmonic
oscillation of a spherical nucleus. It is also reasonable that the matrix elements

+ +
connecting the 2 and 2 states should thus be rapidly increasing as the transition
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to nearly spherical shape is being consummated.

One of the most important points to note is that the calculated wave functions
are ''spread all over the place w13 and thus the cor)nmon calculational approximations
of small oscillations in B and % are not really valid in this region. This result of
the Kumar and Baranger theory is thus in part a retrospective justification of the
exact treatment given by them to B and ¥y vibrations.

It must be remarked that the above description of the wave functions assumes
full agreement of observable quantities with the predictions of the Kumar and
Baranger theory. This is not true, as has been indicated. However, the degree
of agreement obtained is sufficiént to allow one to consider the model wave functions
as good approximations to the physical ones. These wave functions are consider-
ably different from those of previous models in several respects, and, in so far
as this is the case, some insights into the detailed nature of collective behaviour
have emerged.

It is now necessary to consider two o&ﬁr.feaiurés. of the: Kumar and Baranger
model. First, it does predict finite quadrupole moments for the excited states.
Since the other predictions of the model are fairly accurate it can be presumed
that the wave functions obtained are not sériously in error either. Since, further-
more, experimental disagreements with the theory are in the rotational model
(larger quadrupole moment) direction, it is thus highly likely that finite quadrupole
moments of 2+ states do exist in all the osmium isotopes studied. The microscopic
theory, with its shallow potential wells, thus provides a physical picture of the
origin of these moments in otherwise apparently spherical nuclei. Even partial
success in this area is of interest for it may well lead to other detailed calculations
that, similarly, do not restrict 8 and % to small oscillations.

The other prediction of interest is that of excited 0+ levels around 1 MeV
or slightly lower. Almost all models, in fact, predict such levels in this region.
The only observed candidates in osmium, however, are the 1086 and 1765 kev 0+
states in Os188. Non-existence of 0+ levels in the other nuclei could constitute
a significant failure in the theories of collective motion in this region, The question
of 0+ states is closely linked to the degree of 'coupling with quasi-particle excitations

and so an accurate interpretation of such states requires a microscopic approach.
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6 +
Bes has calculated the properties of 0 , B-vibrational, states using the
pairing-plus-quadrupole formalism without the adiabatic approximation (see Section

. + 3! +
II-B). He predicts 0 states at about 1.5 MeV in 08186’ 188, 190 with B(E2:0 =2 )

values in the range: 0. 002 - 0. 009 x 10-48e20m4. His predicted excitation energies,
however, bring these levels to within a 100 kev of the energy gap, that is, of the
minimum excitation energy for intrinsic two quasi-particle excitations. Thus strong
mixing occurs and the so-called B-vibrational states are not very collective in
nature. If the 1765 kev O+ level in Os188 is considered as the PB-vibration in that
nucleus, then its energy is, in fact, not badly accounted for in Bés' model. However,
if the 1086 kev 0+ level is chosen then Kumar and Baranger more accurately calculate
its energy. Moreover, their predicted B(E2:O+'—° 2+) value in Os188 (See Table VI-12)
is nearly adequate, especially when one recalls that their model neglects mixing
with quasi-particle states and hence the calculated B(E2) values should be taken

as upper limits only. Also, in Os188, the two 0+ states undoubtedly mix strongly
with one another as well and so neither should be considered to contain the entire
predicted collective character.

On the assumption of B&s' results, the 0+ levels in the osmium isotopes
would be nearly impossible to observe via Coulomb excitation due both to their
high energy and to their small collective enhancements. In fact, even Kumar and
Baranger's predictions for the 0+ levels are barely sufficient to render them
observable in these experiments. Therefore, we can say nothing definite about
this important test of the various models except that, thus far, the experimental
attacks on the 0+ states have not yielded results inconsistent with the theories and
have, barring degeneracies of the kind mentioned below, indicated upper limits
on the B(E2:2+—' 0+') values in these isotopes of about 0. 015 x 10_48e20m4.

One initially disturbing aspect of the comparison of experimental results with
both microscopic theories, though, is that, since the B(E2:0+'-° 2+) values are
predicted to increase for the lighter osmium isotopes, observation of a 0+ state
in Os188 would seem to imply even more facile detection of one in 05186. No
such state is seen, however. Assuming it exists, it is not hard, though, to explain
its lack of observation for it might well be in the 700-1000 kev range and its de-

+ .
excitation to the 2 state could yield a ¥-ray nearly degenerate with the strong,

. o+ Hot . . .
relatively high energy, 2 = 0 or 2 -2 transitions in this nucleus.
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For several reasons the stress thus far has been on mainly a single micro-
scopic model. For one, it predicts finite quadrupole moments in nearly spherical
nuclei and, for another, its more general and exact treatment of B and ¥ vibrations
is conceptually more satisfying than the approximations usually made. The compar-
isons with experiments have not belied the expectations initially held for it. It is,
nevertheless, appropriate to consider certain other microscopic calculations in the
osmium region.

We shall limit ourselves-to two representative examples of calculations of
the properties of the ¥-band states.

~The calculations by Marshalek and Rasmussen8 actually were not performed
for the osmium nuclei but rough values for energies and B(E2) values in osmium
can be obtained by extrapolation from the trends evidenced in Hf and W. The cal-
culations are based on the so-called vibrating potential model which is a general-
ization of the cranking model and which avoids the adiabatic approximation.

The 2+' y-vibrational state energies are found to decrease as the region
of strong deformation is left behind. This is likewise found experimentally and
also predicted by Kumar and Baranger. Extrapolation indicates that 2+' energies
are fairly well accounted for. B(E2:0+ - 2+') values appear to be increasing as
the osmium region is approached and numerical values are roughly 12 single par-
ticle units. Experimentally, the B(E2) values are typically 6-8 single particle
units, but are constant or decrease as Os192 is approached.

For more detailed comparison with alternate calculations of ¥-vibrational

b4

states we turn now to the work of Bes and coworkers Calculations in the

adiabatic approximation and in the more general framework of the linearized
equations of motion were performed (for both approaches, see Section II-B). We
shall mainly consider the latter model. In it, an extension is made in that the

interaction Hamiltonian (see eqs. II-36, 56) is not simply HQ—Q but rather

_ VI-3
Hit = Ha@ * Heor
2

where H., = -——— J . R (J is the total and R the intrinsic angular momentum).

Cor I

H Cor thus represents the Coriolis interaction between intrinsic and rotational degrees

of freedom. As usual, the collective energy levels are obtained by solving a dis-
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persion equation (see eq. II-37).

In the osmium region the 2+' state energies are calculated to be rapidly
decreasing. Although E2+' for Os186 is closely approximated by the model, the
2+' energies in the heavier osmium isotopes have already become imaginary and
the nuclei are %-unstable. Bes 0:-:.‘,_3_1.54 point out that results here are extremely
sensitive to deformation because of the behaviour of certain Nilsson orbits. Thus,
in the light of the Kumar and Baranger finding that the wave functions are not at all
well localized at a single value of B, it is not surprising that the calculations
run into trouble. Hence it is only for Os186 that Bés %?4 can calculate a
B(E2:O+ - 2+') value., They obtain 0.51 x 10_48cm4e2 or about twice the exper-
imental value., This added enhancement is consistent with -the slightly low value
they obtained for E 2+'. In the earlier, adiabatic calculations of B€s6, which

- + +!
also neglect the Coriolis interaction, B(E2:0 = 2 ) values can be calculated in

1
Os 86, 188, 190 since large values for ¥, but not ¥ instability, are derived for

8 42
cm e ) respec-

these nuclei. The calculations give 0.22, 0.23, and 0.37 (x 10-4
tively. These are in better numerical accord with our results than the later, more
general, theory, but the theoretical trend, especially as seen in 05190’ opposes

the experimental.

Thus, in conclusion, it appears that the best and more complete microscopic
calculations in the osmium region are those of Kumar and Baranger. Their model
is far from being perfectly satisfactory since it is based on the unrealisticl?” 44
pairing-plus-quadrupole approximation to the nuclear force. Nonetheless, the
calculations, though crude in this sense, have permitted a fairly detailed inter-

' pretation of the osmium isotopes and should motivate subsequent, more exact,
treatments. It may now be of interest, therefore, to determine if the same
overall picture is mirrored by two rather more refined macroscopic models:

the rotational model with rotation-vibration interactionszg’ 30 and the asymmetric
rotor model of Davydov and co—workers32’ 35 in its later forms.

We recall from the discussion of Section II-A that the first order correction
to the ground state band wave functions arising from mixing with the ?y-band leads,

in turn, to a term that is proportional to J2 (J+1 )2 in the expression (eq. II-17)

for the ground state band energy levels. The physical origin of this interband
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mixing can be pictured as due to small dynamic departures from axial symmetry
in the ground state band wave functions. One must be careful in applying this
analysis to the osmium nuclei for it is not at all clear that a first order treatment

of the mixing is sufficient. Kumar and Baranger indeed found that the wave functions
n OS190, 192

OS186, 188

were actually smeared over large regions of the f-% plane. Even in
, the preference for axial symmetry was not overwhelming. In the
mixing analysis the amplitude of the y-vibrational wave functions in the ground

state is proportional to the quantity € which is, itself, a function of the branching

190, 192

) + + + +
ratio B(E2:2 - 2 )/ B(E2:2 - 0). InOs this ratio deviates so much

from the rotational limit (1. 43) that it is unlikely that a mixing analysis would be

186, 188

meaningful. Even in Os the validity of this approach is not certain but we

have performed the mixing calculations on these nuclei anyway.
A priori, we might actually expect an accurate mixing analysis to contribute
a larger fraction of B in eq. II-17 in the osmium nuclei than it has provided else-

2 4
re 5, 2T, 30, 120 since lower %- band energies and higher B(E2:0 —~ 2 )

whe
values indicate that the 2+ and O+ state wave functions may be considerably mixed.
In a microscopic calculation of B by Marshalek and Rasmusseng, in fact, other
factors, besides mixing, such as the CAP effect and the reduction in A due to

the Mottelson-Valatin effect were found to contribute relatively 1ess to B in the
high A end of the rare earth region than in the low A end. Therefore we might
expect a large fraction of the experimental value of B to be accounted for by

mixing with the vy-band.

Using the ratios

+ +
B(E2: 0 - 2°)

+ +
B(E2:2 = 2) )
B(E2: 0t~ 27)

B(E2: 2t = 0%)

and

to determine z‘y and oz‘y, values for e‘y (eq. II-18) were found and the quantities
B calculated using eqs. II-16, 17. The results, and a comparison with the exper-
imental values, Bexp’ are given in Table VI-13. The Bexp were obtained by fitting

the observed energy levels with an expression for E _ analogous to eq. II-17 but

J
containing a term cubic in J(J + 1) as well.
From the table it is apparent that the +-band-ground band mixing correction

accounts for 25-50% of B. This is to be contrasted sharply with typical values of




TABLE VI-13. COMPARISON WITH EXPERIMENT OF ROTATIONAL MODEL
WITH ROTATION-VIBRATION INTERACTION

The rotational model with rotation-vibration interaction was used to calculate,

in Os!86, 188, the coefficient B in the energy expansion of eq. II-17. Exper-
imental branching ratios were usedto determine the parmeters of the theory The
results for BR v are compared with the analogous experimental quantities, Bexp'
188
Os186 Os
Zy -0.10 -0.163
o 3.46 2. 80
y
€ -0. 0059 -0. 0119
Y
B - -
RV, (ev) 26 89
B (ev) -100 . -175
exp.
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2
5-10% in Nd, Sm and Gd 5 17 120. Previous evaluations 30 of the contribution

to B from the mixing in Os186’ 188

used less well-known ratios of B(E2) values
and obtained results somewhat lower than those of Table VI-13. However, the
general conclusion remains that the mixing apparently accounts, as might be
expected, for a decent portion of the perturbations on the J(J + 1) law but that
other microscopic effects are needed to account for at least half the observed
deviations from the simple law. The fraction of B contributed by the mixing is
also seen to increase as E2+' decreases and as , accordihg to Kumar and Baranger,
the first 2" state begins to contain K = 2 components in increasing amounts.

Another way to consider the rotation-vibration analysis, that is, to include
K = 2 components in the ground state band wave functions,is afforded by the asym-

2—35. In fact, to first order, the

metric rotor model of Davydov and co-workers®
Davydov model obtains expressions for the ground band energies and for certain
branching ratios that are similar in form to those obtained in the Bohr-Mottelson
model with rotation-vibration interaction88. It has been pointed out that the two
models are actually equivalent for all predictions concerned with K= 0 and K = 2
bands38. Recently Yamazaki 9L311_.39 have cast some doubt, however, on the
reliability of the physical basis of the model in the osmium region by pointing out
that analysis of beta decay studies shows that the structure of the 2+' state is
significantly different from that of the ground state. In the asymmetric rotor
model this state is rather depicted as just another rotational excitation built on
an axially asymmetric structure. Nevertheless, particularly because the Kumar
and Baranger calculations indicate the likelihood of ¥ instability or of actually
asymmetric equilibrium values of %, it is worthwhile to consider brieﬂy how
well this model accounts for the properties of the osmium isotopes.

Such comparisons in the osmium region with the Davydov- Filippov version
of the asymmetric rotor model have previously been published70’ 7, 95, 40.
This version, however, assumes rotations about fixed values of both B and .
In light of our previous discussions this is a dubious approximation. Davydov and
Chaban34 have relaxed this restriction somewhat by allowing at least small amplitude

B-vibrations. Numerical results for the case of variable y are not yet available.

We present, in Table VI-14, a comparison of our results with the Davydov-




TABLE VI-14. COMPARISON OF ASYMMETRIC ROTOR MODEL WITH
EXPERIMENTAL RESULTS

In this table we compare experimental energy level and B(E2) ratios with those
predlcted by the asymmetric rotor model. For the theoretical ratio B(E2: 2t =g )/
B(E2: 2t a2 ) and for the energy level predictions we use the Davydov-Chaban
model which allows for softness in 8. This model 's predictions are specified by
the parameters 7y and p which are also listed. 7y and g were determined from the
ratios E4+/E2+ and E2+'/E2+ . For the other B(E2) ratios listed calculated values
in the Davydov-Chaban model are not available. We therefore have used the similar
Davydov-Filippov model which, however, assumes fixed 8.

1 192
05186 O§188 052 | os
y 16° 19° 21° 25.2°
7} . .26 .25 .25 .25
1
BE2:2" - o) Th. 0.32 0.21 0.15 0. 05
ot +
B(E2:2 2) Exp. 0.38 0.28 0.145 0. 085
X .37 .
BE2:4" ~ 2 Th. 1. 37 1. 37 1 1.36
oFf o ot
BE2:27= 07) Exp. 1. 46 1. 41 1.25 .11
.64 .70
B(E2:6 — 47) Th. 1.57 1. 60 1.6 1
o o oF
B(R2:2 o) Exp. 1.70 0.70 1.15 ———-
' 0.002 0. 021
B(E2:4" - 27) Th. 0.006 | 0.001
2F o o7
B(E2:2 o) Exp. 0.0236 | 0.020 0.0077 | ----
Th. 6.2 5.8 5.45 5.20
E6+/E4+
Exp. 6.34 6.13 5.73 _——
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Chaban model. For the reader's convenience we do not adopt the notation of the
latter authors but rather continue to designate the various levels as we have
previously done in this thesis. The model predictions are fully determined by

the parameters ¥ and u which are also listed in the table. The observed trends
are fairly well predicted and, in many cases, quantitative accord is attained. It

is especially in its predictions of ratios of reduced transition probabilities involving
the 2+' state that the Davydov-Chaban model is seen to be a significant improvement
over the simple symmetric rotor model.

The large values of both ¥ and p imply that the osmium nuclei are both
"soft "' to B vibrations and have, in this model, large equilibrium values of .
Furthermore, the asymmetry increases from 05186 to Os192. These conclusions,
especially those concerning the equilibrium values of % are not necessarily
quantitatively correct. What is most probably correct, however, is that the
qualitative picture of either axial asymmetry or near ¥-instability is a reasonably
accurate one in this transition region. This statement, moreover, is more or less
independent of the specific phenomenological model to which one turns in order to
correlate the experimental observations and corroborates the analysis of the
several microscopic theories we have considered.

We are not, after all, seeking to obtain a detailed knowledge of the nucleus
with these macroscopic models. Rather, we wish to use them to point out gross
nuclear characteristics and to indicate, frequently by their own failures, the need
for inclusion of other, often microscopic, effects. In this way, they may serve
as guide-lines indictating certain desired features of the macroscopic nuclei that
the more fundamentally-oriented theories must ultimately produce out of their
superpositions of myriad microscopic elements. This correlation of approach
has, in fact, been fruitful in the osmium nuclei for it has turned out that those
microscopic calculations which derive the same resultant macroscopic structures
as inferred from the successes and failures of the phenomenological models are also
those that best account for the detailed properties of these isotopes. The result
is that we now at least partially understand both the general structure and even the
microscopic makeup of the even-even osmium nuclei and of the transition region

in which they lie,
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VII. SUMMARY AND SUGGESTIONS

186, 188, 190, 192’ have been

The four even-even isotopes of osmium, Os
studied using Coulomb excitation induced by O16 ions with bombarding energies
between 42 and 80 MeV. The isotopes listed span the transition region from highly
deformed to nearly spherical nuclei at the high A end of the rare earth region of
deformation. The emphasis has been on a detailed quantitative study of the low-
lying collective levels in these nuclei. In particular, the major effort has gone
into extracting a large number of absolute reduced transition probabilities and
branching ratios from the data. Confirmations and tentative extensions of already
published decay schemes have also resulted.

The reasons for studying these nuclei have been several. They span an
important region which has long been a traditional testing ground for collective
theories. As much data as can possibly be garnered here is thus of use. Secondly,
previous studies resulting in B(E2) values in these isotopes have been beset by
large errors and limited in scope to consideration of only the lowest three states.
Thirdly, the recent microscopic theory of Kumar and Barangerls, as well as other

microscopic calculations 8, 54 have never been seriously tested in a detailed
manner in this region. Due particularly to the enthusiasm generated of late for
the Kumar and Baranger model, it appeared desirable to provide that model with
accurate experimental values for comparison with its predictions. Fourthly, by
complementing earlier studies in this 1aboratory117’ 118, 120 on the sharper tran-
sition region at the low A end of the rare earths, it was hoped that we could obtain
a more comprehensive understanding of the detailed interactions in nuclei inter-
mediate between the limiting cases of the simple collective models. In particular,
by offering a gradual transition region, the osmium isotopes are specifically well-
suited to a study of some of the more subtle effects that arise in transitional
nuclei.

186, 188, 190

+
In Os all levels up through the 6 state of the ground state

! 1 188
rotational band and the 2+ and 4+ states of the 9y-band have been excited. In Os
41
an additional 0 level at 1086 kev was observed. In Os192 all known levels except

+
the 3 were excited. For all these states, reduced transition probabilities for
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their excitation have been extracted from the results. In addition, transitions of

780, 840 and 855 kev in Og o0> 190+ 192

respectively, have been observed. They
cannot be fit consistently into present decay schemes. Hence, using in particular
the ¥-¥ coincidence data, we have tentatively predicted new levels at these energies.
The spins and parities are not known although 2+ or 3  assignments are not incon-
sistent with our observations. Aside from results concerning the decay schemes
of the four nuclei, the principal experimental results of this research are tabulated-
in Tables VI-1, 2, 3 and 10.

In extracting B(E2) values from the data several approaches have been used.
First and second order perturbation theory were employed to calculate the excitation
probabilities of the 2+, 4+ and 2+' states. The model-dependent multiple Coulomb
excitation theories of Alder and of Lutken and Winther have been applied in the
analysis, respectively, of the ground state band and ¥ band excitation probabilities.
The emphasis here was less on extracting B(E2) values than on investigating the
rotational and vibrational excitations in these nuclei through comparison of these
B(E2) values with ones obtained in a model-independent manner. Finally, full sets
of such model-independent B(E2) values have been obtained via use of the Winther
and de Boer computer code for the solutions of eqs. II-68. A fairly detailed
discussion of the application of this code, and of a thick target version of it, was
also presented in which was considered the accuracy of several approximations
(M = 0, one mean angle 8, etc.) as well as techniques for the choice of signs and
magnitudes for the various matrix elements required in attempts to fit the data.

The B(E2) values obtained with this code were compared, along with other
properties of the osmium isotopes, with the predictions of several macroscopic
and microscopic nuclear models. These included the rotational model of Bohr and
Mottelson, the same model with rotation-vibration interaction, the Davydov and
Chaban model, the microscopic calculations of Bés and of Marshalek and Rasmussen
and, in particular, the microscopic theory of Kumar and Baranger.

We shall not attempt to summarize all of these comparisons here. Suffice
it to say that the Kumar and Baranger model proved highly encouraging and accurate
in most of its predictions. Variations with neutron number of all predicted B(E2)

values follow the experimental trends quite well. Absolute magnitudes are also in
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quite creditable agreement although the quantities B(E2:2+—-2+') are consistently
somewhat larger than observed. Energy levels, g factors and moments of inertia
are impressively reproduced. The model's principal shortcoming is that the tran-
sition to spherical nuclei is predicted to be too sharp. Specifically, the observed

4
B(E2) values for excitation of the 2 states in 05190, 192

actually lie between the
rotational limit and the Kumar and Baranger predictions. In particular, the calcu-
lated B(E2:0+——2+') values tend toward zero in these nuclei more rapidly than is
observed to be the case. This shortcoming is perhaps rectifiable if the input
parameters (e.g., the single particle energy levels or the quadrupole force strength,
X) are varied somewhat so as to brqduce a slightly deeper potential minimum in
these nuclei. Then the wave functions would not be quite so spread out in gand ¥
and the deviations from sphericity would be correspondingly greater. Calculated
wave functions would exhibit less overlap with those of a simple harmonic oscillator
and the E2 matrix elements between the ground and 2+' states would not decrease

as precipitously.

One other possible failing of the model is its prediction of 0+' states which
are not (except in Os188) observed. However, the predicted B(E2) values for exci-
tation of these levels are sufficiently low that experimental observation of the latter
is expected to be very difficult anyway. The experimental results reported here thus
can make no definite conclusions about this matter.

In general, however, all the models investigated, and in particular that of
the above authors, have indicated that a correct picture of the osmium nuclei depicts
them as possessing shallow potential wells with weak minima for slightly prolate
shapes (with somewhat axially asymmetric equilibrium configurations in 05190, 192).
The wave functions can be considered to be extensively smeared out in the B-7y plane.
The conclusion is that a serious treatment of these isotopes cannot limit itself to
fixed or slightly varying values of these parameters, but must, like the Kumar and
Baranger model, admit of an exact treatment with no limitations on B and ¥
oscillations and with no a priori assumptions of weak coupling between rotations and
B and ¥ vibrational excitations. Furthermore, the overall comparison of the osmium
nuclei with the rotational model and with that of Kumar and Baranger makes it quite

likely that finite, even large, excited state quadrupole moments exist in all four nuclei.
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It is thus of interest at this juncture to mention some other attempts to calcu-
late finite quadrupole moments in nearly spherical nuclei. Such alternate calcula-
tions have not concerned themselves with osmium but rather more commonly with
the isotopes of cadmium. Therefore they are not strictly relevant here except as
they illustrate certain features apparently required of such (nearly spherical, finite
Q2+ ) nuclei. Calculations of the kind referred to have been carried out by Tamura
and Udagawa122, by Do Dang et al. 122 and by B. S¢rensen122. All] three calculations
obtain the "correct " 2+ state quadrupole moment in Cd114 by the inclusion of anhar-
monicities. Those of Tamura and Udagawa, however, are also in error by a factor
of five for the 2+' state's branching ratio while the other two models do not calculate
this quantity. Do Dang et al. and Tamura and Udagawa mix phonon excitations in
the construction of the first 2+ state. As is well known24, the anharmonicities thus
introduced are closely related to the substitution of the HRPA for the RPA in a micro-
scopic calculation. In fact, Tamura and Udagawa point this out and indicate that
an improved use of the HRPA in their calculations might correct the 2+' state branching
ratio. The work of Do Dang et al. involves the somewhat different mathematical
technique of a self-consistent perturbation theory approach. However, they similarly
comment that the linearization inherent in the RPA is inadequate here.

Recollection that, in the RPA, pairs of Fermion operators are assumed to
obey Boson commutation relations leads to another means for the introduction of
anharmonicitieg. This so-called quasi-boson approximation may be acceptable
if the number of available states is much greater than the number of particles
outside the last closed shell. In any case, inadequacies in the approximation may
be partially obviated24 by the addition of correction terms in the Hamiltonian that
result from an expansion of pairs of Fermion operators in a series of Boson oper-
ators. Investigations of this type have been considered by Belyaev and Zelevinsky24.
The work by Sgrensen, mentioned above, is, in fact, structured along these lines.

The question of axial asymmetry merits inclusion at this point. We note that
such a condition is obtained for the ground state wave function by Kumar and Baranger
for 08190, 192. Furthermore, Tamura and Udagawa point out that, for large values
of the axial asymmetry parameter 7, the asymmetric rotor model of Davydov and
co-workerssz—35 can also predict finite quadrupole moments of the same magnitude

and sign as found experimentally in cadmium. The latter model also yields
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Q2+3 - 1.0 barns in Os190 and Q2+E -0.5 barns in Os192. These are quite close to
the Kumar and Baranger results of -0. 89 and -0. 36 barns for the same quantities.
Finally, axial asymmetry, anharmonicity, and finite excited state quadrupole moments
are again interrelated by the fact that Belyaev and Zelevinsky, by the technique des-
cribed above, obtain a formula for the 2+' state's branching ratio of the same form as
that calculated with the Davydov model.

Thus certain conclusions may be drawn from this general confluence of ideas.

It is apparent that there is a strong kinship between the existence of finite quadrupole
moments in otherwise nearly spherical nuclei and the presence of axial asymmetry
and of anharmonicity. Since the models which successfully treat the osmium region
characteristically predict both anharmonicity and asymmetry (or at least near y-
instability) this rather general three-fold relationship indicates the likelihood of a
corresponding presence of non-zero excited state quadrupole moments in these nuclei.
Also, from a microscopic viewpoint, the collective excitations in such nuclei must be
quite complicated structures, including, in part, coherent superpositions of two
particle-hole (or four quasi-particle) excitations. An adequate treatment of these
nuclei must thus involve a fairly sophisticated approach such as is provided, for
example, by the model of Kumar and Baranger or by calculations with the HRPA.

It is thus of extreme interest to determine if indeed the osmiumnuclei do possess
finite quadrupole moments. If they do, the triple relationship mentioned above will
again be manifested, and added credence may be conferred on the calculations of
Kumar and Baranger and impetus given to further treatments along similar lines.
Furthermore, such an eventuality would imply that a detailed understanding of the
osmium nuclei, of their transition region, and of similar nuclei may now be near at
hand, although a fully acceptable theory should employ more realistic forces than
the pairing-plus-quadrupole interactions used so often now.

The investigation of the osmium nuclei is not completed by this study. There
are several puzzles remaining and experimental attacks directed toward their
elucidation are urgently needed. Several specific suggestions for future research
in this region will now be considered. Many have been mentioned in passing earlier.

1) It is very important to determine once and for all whether or not
excited 0+ states exist in these isotopes. For this purpose, (p,t) reactions leading

to even-even osmium nuclei should be an appropriate tool. Such reactions tend to
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preferentially populate collective 0+, 2+ and 3 levels and go any existing 0+ states
would be likely to be observed. This reaction is also not limited to low excitation
energies as is Coulomb excitation. Any 0+ levels populated could be identified by
the transferred £ values. Furthermore, other states such as the tentative ones

found here at 780, 840 and 855 kev in OS188, 190, 192

might be investigated in a
similar manner.

2) It is, likewise important, as mentioned above, to measure the
quadrupole moments of the excited states in osmium. This would be a significant
test of the Kumar and Baranger theory. For this purpose one could make use of
the so-called "reorientation effect 196 (see pages 97—98), employing Coulomb

2, bls, S32) to extract the

excitation with several different projectiles (e. g. , C1
signs and magnitudes of these quantities.

3) To complement the comparison of the properties of the Os nuclei
with the calculations of Kumar and Baranger, it is desirable to study the neighboring
isotopes of Pt and W to which these authors have also applied their model. in this
way the model could be confronted with data on the entire transition region and its
merits tested in even greater detail. Specifically, its ability to deal with variations
in proton, as well as neutron, number could then be subjected to scrutiny.

4) In order to more fully investigate the structure of 08192’ (o, xn)
reaction studies leading to this nucleus in the final state would be useful. This
reaction is known to preferentially populate the ground band states up to very high
angular momenta and thus would reveal any 6+ and 8+ states that might exist in
this nucleus.

5) Finally, further tests of the rotational structure of the osmium
isotopes would also be provided with Coulomb excitation studies using heavier
projectiles such as S32. If these latter ions could be accelerated to 100-150 MeV
then one would be in the region of oscillation of the relative population curves for
the various rotational band members (see Section II-C). The degree to which the
the excitation probabilities track the predicted ones would provide a test both of
the rotational character of the levels excited and of the accuracy of the model-
dependent multiple Coulomb excitation theories. In addition, a similar approach

might be applicable to the states of unknown spin and parity suggested earlier at
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about 800 kev in Os188’ 190, 192.

It might be feasible to obtain at least a model-
dependent set of spin assignments if these levels could be excited with sufficient
frequency so that accurate experimental excitation probabilities could be extracted
for comparison with the relative population curves. In such an analysis, however,
the serious inability of the rotational model to describe accurately the excitation of
levels in osmium that are not members of the ground state rotational band would
render such assignments helpful but still only very tentative.

The experiments suggested above, and especially the first two and the fourth,
would serve to complement our present, quite detailed knowledge of E2 transition
probabilities in the osmium nuclei (the latter provided in large part by the exper-
iments déscribed in this thesis). Coupled with the third suggestion, they would
thus tend to round out the experimental attack on this important transitional region.
A relatively complete body of experimental knowledge would then exist, for these
nuclei, with which future generations of theoretical calculations could compare
their predictions in the ongoing hope of finally approaching a comprehensive

knowledge of collective behaviour in atomic nuclei.
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Appendix I
Targets

A. Thin target fabrication

In this appendix two methods of fabrication of self-supporting Os targets
will be described. As indicated in Section III-D thin self-supporting evaporated
targets of Os have not previously been made and evaporated Os targets on backings
have been limited to thicknesses <1 pg/cmz. For experiments of the type described
herein targets of several hundred ,.Lg/cm2 would be desirable. Other experiments,
perhaps involving separation of elastically from inelastically scattered particles
would require even thinner foils. These, too, should be producible by the evap-
oration and floatation method described below.

Qs cannot conveniently be evaporated from the usual ""boat "' arrangement
for making many targets due to its high melting point of 2700° C. 13 An electron
gun would indeed be suitable for evaporatiqn of osmium powder but most such guns
are much less efficient than a directional boat. This can be a serious disadvantage
with an expensive material such as osmium. ‘Another problem associated with
use of a gun is the possibility of evaporating some of the gun's own base material.
Finally, a third problem is that once osmium powder melts it tends to coagulate
and, for a fixed beam spot size, to subtend a smaller fraction of the electron beam
target area. Compensation by increased power output of the gun leads to recurrence
of the secondproblem mentioned above, even if the gun's base is water-cooled.

This third problem implies that one must avoid magnetically focussing
electron guns and use electrostatically operated ones. In the latter, the spot
struck by the beam is determined by the electric potentials involved and, by
situating the evaporant as physically the cloéest material to the filament and focussing
shield, one will insure that the electron beam will track the evaporant even if the
latter should coagulate.

The first two problems mentioned above are soluble by employing. as
inherently efficient and adaptable a gun as possible and by degig1ﬁng the boat or
substrate on which the evaporant rests so as to maximize efficiency and to prevent

substrate evaporation.
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A suitable gun for these purposes is the MRC V4-200 Electron Vapor Dep-
osition Gun illustrated in Fig. A-1, and described in reference 112. For our needs
here it is sufficient to note that, in use, the entire shield and filament assembly is
raised to a high positive voltage relative to the grounded, water-cooled copper base
assembly intt; which the boat is screwed. The low voltage, high current power
supply used to heat the filament is thus at high negative potential and suitable
insulating precautions are necessary. The electrons emitted from the filament
are focussed downward onto the boat. The power input into the boat is approximately
equal to the product of electron current and shield voltage and can be varied easily
from a few watts to almost 2 kw. An advantage of this gun is that the figure of merit
is power and any combination of voltage and current giving the desired power is
sufficient. Thus, if for some reason high voltages are undesirable or unattainable
(due to sparking, for example), one can employ higher currents instead.

The design of the boat is critical and the most successful version is shown
in Fig. A-1 (insert). It consists of a cylindrical tungsten rod . 250 " in diameter
and about 71; " long press-fitted into a . 240 " diameter ho}e in a copper holder which
in turn screws into the electron gun's water-cooled base. The press fitting assures
good thermal contact (and hence cooling efficiency) between the tungsten and copper.
This, plus its greater thermal conductivity, is one reason tungsten is used instead
of carbon. Even better thermal contact is achieved by melting the top of the copper
so that it flows into intimate contact with the tungsten. The top of the tungsten should
previously have been scooped out into a cup-shaped cavity into which small amounts
of osmium powder can be placed. This scooping is done with either an abrasive
blasting with fine (50 p) silica pellets using an S. S. White Airbrasive machine or
by an "Agietron" Electrical Discharge Machine (EDM).

The cup size should be sufficient so that about 30 mg of Os can be inserted
at once. It has been found necessary to loé.d the boat and evaporate several suc-
cessive charges of Os in order to obtain film thicknesses sufficient to be self-
supporting. Employing a larger cup size initially is not an acceptable substitute.
Regardless of the amount of Os inserted into the boat only about 15 to 20 mg can
be evaporated at once. This is partially due to the coagulation problem mentioned

above. The coagulated globules of Os, though "attracting' most of the electron
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beam, are not nearly as susceptible to evaporation due to their drastically reduced
surface area.

The evaporation procedure is described below. It should be noted, however,
that the precise timing and characteristics of each step vary considerably with
each evaporation due to variations in granular size of the Os powder and to different
amounts of globulation. |

1) The first step in the thin target fabrication procedure consists
a thorough cleaning of the entire gun with water, acetone, and ethanol. If necessary,
the shields and copper base may have to be cleaned with acid or sandpaper.

2) Further cleaning is accomplished in this step also. The boat is
inserted into the vacuum system with no charge of osmium in it. The high voltage
and filament current are gradually raised until about . 8-1. 2 kw of power are striking
the tungsten surface. With no Os in the boat the copper is being almost directly
heated (despite water-cooling) and care must be taken to insure that the copper
does not melt and destroy the boat. After about 10 minutes the power can be
gradually reduced to zero and after the system has cooled sufficiently the gun may
be removed and a charge of Os powder inserted. Pressures during all stages are
not critical but should be at least in the low 10_4 mm. Hg. range or high 10"5 mm.
Hg range at the st.';lrt of evaporation. Pressures of 2 x 10—6 mm. Hg are typical
at the conclusion of an evaporation stage.

3) In order to later float the Os films from the substrate onto which
they have been evaporated, the substrate must be coated with some material that
easily dissolves in a convenient solvent. The most suitable combination has been
found to be an ordinary laboratory glass slide coated by evaporation with reagent
grade.l NaCl. The NaCl film should be quite thin and not powdery or streaked in
appearance, These slides may be prepared prior to use and stored in air for up
to several days before excessive quantities of adsorbed moisture render them
useless.

The use of NaCl has several advantages: 1) It is extremely soluble in water
and hence contaminatinn problems are minimized; 2) The contaminants that do
remain are known; 3) Floatation success probabilities with NaCl approach 100% even

with poorly prepared NaCl fil ms.
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4) With 20-30 mg. of Os powder piled high in the boat and with the
NaCl-coated glass substrate inserted about 2 inches vertically above the osmium,
the chamber may be re-evacuated and the high voltage and filament current may
be increased gradually over a period of about 20 minutes so that total power input
reaches about .6 kw. Typical settings are: high voltage 4000V, filament current
= 150 ma. Somewhere.in this power range the osmium will begin to evaporate
very slowly and it is of the utmost importance that the electron beam power be
set just at the lowest threshold of evaporation. Otherwise coagulation will occur
and evaporation will cease. Evaporation should continue at these settings (which
may be slightly and gradually raised as evaporation proceeds and fewer electrons
are actually striking the remaining Os powder) until no further darkening of the
glass slide occurs. Voltage and current should then be reduced slowly to zero
and the system let stand to cool for about 30 minutes. Osmium tetra-oxide is
poisonous and so care should be taken not to expose the Os to the air while it
is at elevated temperatures. Osmium will suffer negligible oxidation at room
temperature. Once cooled and removed from vacuum the boat should be recharged
and step 4 repeated.

. 5) Repetition of step 4 should continue until the glass slide is nearly
opaque. An alternate test is tﬁat the gun's filament with about 16 amperes flowing
through it should be merely a dull red when viewed through the glass. When this
occurs the glass slide should be removed and-(after the Os film is scored into
conveniently sized target shapes) placed in the floatation apparatus. This latter
merely consists of a holder for the slide which suspends the glass at about 30° to
the horizontal in a beaker into which distilled, deionized water can be gradually
introduced. The water should be allowed to rise gradually, so that it seeps under
the osmium film and dissolves the NaCl. The Os film then floats off and may be
picked up on thin metallic holders. These holders must be no more than =.020"
thick or else water adhering to the perimeter of the central hole will be heavy enough
to pull the Os film through and destroy it. Finally, the Os film must be lifted nearly
vertically out of the water to reduce surface tension effects. (No contamination
problems occurred in these experiments if ethanol was added to the water to reduce

surface tension and facilitate picking up of the films.) The resulting Os films must
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now be allowed to dry thoroughly before being moved or vibrated. It is during
this drying stage that most unsuccessful attempts actually fail. After having dried,
the films are quite sturdy.

Approximately 80 mg. of Os is needed for the production of these targets.
As many as five or six targets may, however, be obtained in one application of

these procedures.

B. Thick target fabrication

The thick targets were considerably easier to fabricate, required only
20-30 mg. of the enriched Os and were somewhat cleaner due in part to reduced
surface-to-volume ratios. They were truly thick, being . 0029 + . 0002 " thick
in all cases. The beam was thus fully stopped in the first few percent of the targets.
The difficulty with mechanical methods of production of Os targets such as are to '
be described is that Os is, mechanically, completely unworkable and non—ductile113
Consequently, it cannot be rolled but only pressed or compacted. The reason for
these properties is that Os is both Qhe heaviest element known (density = 22, 48g/cm3)
and one of the hardest, (Its hardness on the Moh scale is 7. 011‘,1)

The fabrication proceduré consists of forming about 20 mg. of the Os powder
into a disk shape on a flat, carefully cleaned slab of carborundum. A second-
identical carbordundum slab is gently placed on top of the Os powder, care being
taken not to disturb the shape of the Os disk. The resulting sandwich is then
mechanically pressed. The use of carborundum stems from the fact that it is one
of the few substances harder than Os (Moh scale hardness of carborundum = 9. 01143.
Pressure must be applied and releasé;i gradually and monotonically. Especially
during its initial application, fluctuations in pressure tend to '"work" the Os,
resulting in entanglement of the embryonic crystallites and preventing further
compactingns. Pressure may be released after about 30 seconds of constant
application.

The amount of pressure necessary is largely irrelevant. Identical results
were obtained when 300 1bs. of force were applied at the end of a 3 foot long lever

arm of a standard Dake Arbor machine shop mechanical press and when approximately
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seven million pounds pressure were applied using the 100 ton hydraulic press of the
Yale University High Pressure Laboratory of the EAS Departmentik

At this stage the Os is solidified into a flat disk which, though, self-supporting ,
has a powdery, non-uniform surface and which often exhibits large quantities of
contaminants. It is necessary to clean the targets and to fuse their crystallites by
annealing. For this purpose one uses the same electron gun as described in part A
of this Appendix. The Os disk is placed on a boat identical to the tungsten-in-copper
one described in part A except that the top of the tungsten is flat rather than scooped
out. Oncein the vacuum system, the high voltage and filament current are applied
to the electron gun very slowly over a period of about 20 minutes until the Os disk
is nearly white hot corresponding to a temperature of about 13000 C. After main-
taining this condition for about 20 minutes the power should be reduced slowly over
a period of another 20 minutes and the Os allowed to cool gradually to room temp-
erature. During the application of the electron beam care must be taken not to let
the heat rise enough that the disk begins to curl at the edges. It is better, if
necessary, to anneal for a longer duration at lower temperatures.

Removal of the Os disks from the vacuum system yields resulting targets
which are very strong and clean, and are ready to be mounted in their holders.
Microscopic examination of these targets reveals a much shinnier, more uniform

and fused surface.

*

I would like to thank Dr. Carl Nelson and Dr. Lance Davis of that labora-

tory for several informative discussions concerning the metallurgy of the osmium
isotopes and for their help in the use of the hydraulic press.
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Appendix II

Computer Programs

The computer programs used in the data analysis were mentioned in

Chapter V. Existing programs 7 were used for calculating the weighted
integrals of Rutherford cross sections according to the denominator of equation
V-17 and for certain portions of the first and second order perturbation theory
analyses. An existing prog‘ram27 for calculating thick target integrals of weighted
Alder Coulomb excitation probabilities based on the rotational model64 was modified
and improved somewhat and used for the calculation of ground state band excitation
probabilities.

Most of the data analysis, however, was carried out using two versions of
the Winther and de Boer Coulomb excitation program ol discussed inSections II-C
and V-E. The first was nearly identical to the published version of the program
and was used for calculation of Coulomb excitation probabilities and cross sections for |
the case of given incident projectile energy and backscattering angle. The second
was a highly modified version included as a subprogram providing the cross sections
for a main program which calculated thick target integrals of the weighted Coulomb
excitation cross sections.

As this last program turned out to be a very convenient tool of analysis,
a listing of the Fortran IV deck is given below. The program has been run
successfully on the Yale Computer Center 7094-7040 system. A typical calculation
of the numerator of eq. V-17 for 7 nuclear states over an energy range of approx-
imately 12 MeV, using the M = 0 magnetic substate only, requires about 25 seconds
of computer time., The integration is performed numerically via Simpson's rule
with an additional remainder term which corrects for non-integral numbers of
steps in the range of integration. The number of magnetic substates to be included
in the calculations and the accuracy of the computation of the cross sections are
selectable in the same way as in the original Winther-de Boer program61
Immediately following the program listing is a typical set of data cards relevant
to the computation of the Coulomb excitation of 7 states of Os188 by 70.30 MeV

incident O16 ions.
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Many of the data cards are identical to those used in the standard Winther-
de-Boer thin tar get program61 and will not be discussed here. It will be noted,
however, that the card controlling the calculation of the angular distribution
coefficients has been deleted since the thick target program only computes excitation
probabilities and cross sections. Besides charge and mass information, the
bombarding energy and the backscattering angles at which the integrals are to be
computed,’new input data consists of the number of levels, k, for which integrals
are desired (last entry, card # 1), the set of cutoff energies, Ecut-’ which specify
the lower limit on the thick target integrals for each state i (card # 3), and the
coefficients of th__g energy loss formula, dx/dE (last entries, card # 2). The
format specifications for the new data entries may, of course, be determined

from the appropriate statements in the listing below.
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THICK TARGFT INTEGRALS OF WINTHER DEBOER COULOMB EXCITATION PROBS
COMMON/B/DSIG(40,10)
DIMEMSION NPED(3)s TE(S00)s FSUM({S500)s EMIN{1O0)
NI= §
NO=6
111 READ(NIs2) EMAXs ESTEP, TMAXs TMIN, TSTFP, K
2 FORMAT(5F10s5+12)
READ(NI«3) 21y Al, 22, A2
3 FORMAT(4F10.2)
READ(5+6) DED(1)s DED(2)y DED(3)
6 FORMAT(3F10.5)
READ(NIZ10) (EMIN(N}s N = 1,K)
10 FORMAT(10F7.3)
WRITE(NO+4) EMAX, ESTEP, TMAX, TMIN, TSTEP
4 FORMAT{1H1,5F10.3)
WRITF(645) Als 21y A2, 22 DFD(1), DED(2), NFN(2)
& FORMAT(1HO,4F6e1512H DX/DE = FBeS595H <+ FBeBTHRE 4+ FBeSs4HRERE)
TERE)
WRITE(NOS12)Y{EMIN(N) 4N=1,K)
12 FORMAT(1HO,10F7.3)
610 TCMAX = TMAX
TCMIN = TMIN
620 KMAX = (TCMAX - TCMIN)/TSTEP + 1,0
WRITE(NO,8) TCMAX s TCMINKMAX
8 FORMAT (1HOs5Xs1THTHETAMAX(CeM,) = FB8,3,20H THETAMIN(CeMe) = F8,
13,10H KMAX = I5)
T = TCMAY
DO LOOP OVFR ANGLES
DO 2000 KA = 1,KMAX
ECUT = EMIN(1) - 1.0
LMAX = (EMAX - ECUT)/ESTEP + 2,0
F = FMAYX
DO LOOP OF DEBOER-WINTHER PROBS OVER ENERGY
CALL PROT(FsTsLMAXs ESTEP, DSIG)
DO LOOP OVFR STATES
DO 3000 N = 14K
E = EMAX
102 PLMAX = (EMAX - EMIN({N))/ESTEP + 1,0
LMAX = PLMAX
ELMAX=LMAX
IF(AMODIFLMAX +2+0)) 106+150,106
150 LMAX=LMAX+1] ’
FLMAXN = L MAX
RLMAXO = (FLMAXN - PLMAX)#ESTEP
WRITE(6,189) RLMAXO
189 FORMAT(1HO,9HRLMAXO = ,F10.5)
WRITE(64+444)
4464 FORMAT({1Xs4HOVER//)
GO TO 114
DO LOOP FOR INTEGRATION OVER ENERGY.
106 RLMAXU = (PLMAX - FLMAX)®ESTEP
WRITF(6+191) RLMAXU
191 FORMAT(1HO,9HRLMAXU = 4F1045)
114 LMAXN = LMAX + 1
DO 4000 L = 1+ MAXN
TE(L) = DSIG(LeNI®(DED(1) + E#DED(2) + FHE#DED(3))
4000 E = E - ESTEP
SIMPSONS RULE FOR INTEGRATION OVER ENERGY.
105 ESUM{KA)I=TE(1)+4,0%TE(LMAX=1)}+TE(LMAX)
LMAXL = LMAYX - 2

3 3,LMAXL 92
200 PouMTCal I BEUMIKA] + 4.0%TE(L-1) + 2.08TE(L)

FSUM(KA) = FSUM(KA)#ESTEP/3.0
IF (AMOD{FLMAX5240)) 1075151,107
151 ESUM(KA) = ESUM(KA) — RLMAXO®{TE(LMAX) + TE(LMAX = 1))/2.0

GO T0 29
107 ESUMIKA) = ESUM(KA) + RLMAXU®(TE(LMAX) + TE(LMAX + 111/2.0

29 WRITE(NO,30) NsESUMIKA)s KA, T




30 FORMAT(1HO,5x53HTHICK TARGET INTEGRAL OF CROSS SECTION FOR STATE N
/(= 13446H) = E12.5,8H KA =12,18H THETA({CeM,) = FB8.3)

32000 CONTINUE
2000 T = T - TSTEP

GO 10 111
FND

$IBFTC PROTF DECK

c
C
C

aNaXa)

[aXa¥alaNa}

[aXala

SUBROUTINE PROT{E,THETA.LMAXy ESTEP, DSIG)
DEBOER-WINTHER MULTIPLE COULOMB EXCITATION PROGRAM

COMMON COT1,COT2

COMMON/B/DSTIG(40,10)

COMMON/Y/ACC10

COMMON /XX/NMAXsEN(10)sSPIN(10)sMATRIX(10+s10),FMT4(6)sXNUM({10)}
REAL MATRIX

INTEGER OUXI,0UPST s OUAMP,OUPROW :

DIMENSTON XI1(10510)sPS1(10510),QU(10,10,6)+P(10)
DIMENSION Q1(180,4)sPROB(90)+sAMPP({180,4)»F(18044+4)
DIMENSION CAT(90,3),2ETA(90,90),AMPDOT(180,4),AMP(180,4)
DIMENSION NSIGLB(10),TCMDG(10),2LBDG(10)

DIMENSION R3(10)sR4(10)+EPP(10)

DIMENSION FMTLU7)oFMTL(9)sFMT22(T)+FMT3(6)

DIMENSION FY{17)sFTL(5)sFT2(6)sFT3(8)+FT4[13),FT5(5)

128

DATA FMTI(1)/41H(1HOs6X1HW2X (6X2HP (12, 1H)16X4HPTOT)/

DATA FMT1(1)/5&4H(34HOENERGY SPECTRUM LEVEL INDEX N {1
1 9))/

DATA FMT2(1}/37TH{1HO420X13HENERGY IN MEV (F9es)Y/

DATA FMT3(1)/32H{1HO,20X4HSPIN,9X (F9et)7y/

DATA FT(1)/98H{28BHOEXECUTION TERMINATED AT W= F1046+s6HPTOT= Flé,.

1 +33H ERROR IN PTOT EXCEEDS 20 # ACCUR)/

PATA FT1(1)/25H(1XF1043511F11, 1/

DATA FT2{1)/32H(1XF5.1+F124191X2(1XF20s 1Y/

DATA FT3(1)/43H(5XI3,11XF15. +8XE15, Y/

DATA FT4(1)/773H(2X13,13XFT7.295XF15, »8XE15. s 8XF8

1XFBe3912XFT7e2+12XF945)/
DATA FTS(1)/25H{1H +317+2F20. V/

READ IN STARTS

300 READ(S,106) INTERVsNTIME,NCM,ACCUR
106 FORMAT(315,F10e7)
INTERV ~ PRINT OUT OF P(N} WILL OCCUR EVERY INTERV-TH STEP
NTIME 1S THE TIME IN MIN ALLOWED FOR THF JoOB
NCM PICKS LEVEL FOR WHOSE CM SCATTERING ANGLE ORBIT IS CALCULATED
ACCUR 1S ACCURACY WITH WHICH INTEGRATION IS PERFORMED

IF{INTERV) 46986547
46 CALL EXIT
INTERV oLE., ZERO ON LAST DATA CARD INDICATES NO MORE DATA
47 READ(55102) X IMAXEMMAX sNMAX
102 FORMAT(2F1040,1I5 )
XIMAX IS LARGEST XI CONSIDERED
EMMAX IS LARGEST MAGNETIC QUANTUM NUMBER CONSIDERED
NMAX IS NUMBER OF NUCLEAR LEVELS CONSIDFRED
READ(55104) OUXIsOUPSI OUAMP ,OUPROW
104 FORMAT(415)
IF THE OUTS ARE ENTERED AS ZERO NO OUTPUT WILL OCCUR

READ(54100) 214A1422,A2
100 FORMAT(4F10.2)
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101 READI(5,105) (EN(N) ySPIN(N) sN=1,RMAX)
105 FORMAT(2F10.0)

PRINT OUT oF INPUT DATA .

WRITE(64430)
430 FORMAT(34H1DE BOER ~ WINTHER MULTIPLE COULOMB EXCITATION PROGRAM/)

FP = F

WRITE(6+831) 214A1,EP
431 FORMAT(32HOPROJECTILE CHARGE NUMBER 21 = F6+2+14Hy MASS Al =

1F843+23HAMUs LAB ENERGY EP = F8,3,3HMEV)
435 WRITE(64+437) 229A2
437 FORMAT(2B8HOTARGET CHARGE NUMBER 22 = F6¢2,14Hy MASS A2 = FB8.3,

12HAMU/)

FMT1(8) = XNUM(NMAX)

WRITE(64FMT1) (NsN=1 ,NMAX)

FMT2(5) = XNUM{NMAX)

WRITE(6+4FMT2) (EN(N) sN=14NMAX)

FMT3(4) = XNUMINMAX)

WRITE(6+FMT3) {SPIN(N) 4Nl sNMAX )

THE QUANRUPOLE MATRIX FLEMENTS ARE PRODUCED IN THE MAT SUBROUTINE

CALL MAT

DECIMAL PLACES FOR PRINTOUT
1J=20
AC=3ACCUR

30 AC=AC#10.0
1J=1J+1
IF(1.0-AC) 31,30,30

31 CONTINUE
1J HOLDS NO. OF DECIMAL PLACES WANTED IN PRINT OUT OF RESULTS
ACCORDING TO ACCURACY OF INTEGRATION

451 CONTINUE
SWITCH = 0,0
DO 1000 MEN = 1, LMAX
WRITE(64+994)EP

994 FORMAT(1HO,S5HEP = F10.5)
COMPUTATION OF XI MATRIX

CX1 = Z1%#22#SQRT(A1)/6.325
NO 3 M=]1,NMAX
PO 3 N=1,NMAX
XT(NsM) = 100.0
IF{MATRIX(NsM)})4,4344
4 RX1 = 1,0/SORTIEP=(1,+(A1/A2)}#EN(N))
RX2 = 1,0/SORT(EP-(1,+{A1/A2))%EN(M))
XT(NsM) = CXTI*#(RX1-RX2)
3 CONTINUE
IF(OUXI)S-&SZ-S
5 WRITE(64+2012)
203 FORMAT(10HOX1 MATRIX)
NO 7 N = 1,NMAX
7 WRITE(64207) Ns(XT{KsM) M=) ,NMAX)
c 207 FORMAT(4HON =12,10F12.4}

DETERMINATION OF THE LARGEST XI VALUE IN XI MATRIX
452 XIM = 0.0
DO 25 M = 1,NMAX
DO 25 N = 1,NMAX
IFIXI(NsM)}.GTeXIMAXIGO TO 25 /
IF(XT (NyM1 LE+XIMIGO TO 25
XIM = XT(N,M)
25 CONTINUE
WRITE(64300)XIM
300 FORMAT(THOXIM = F10.4)
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COMPUTATION OF PSI MATRIX®

CPSI = 14436%#SQRY(AL)/{{1e+(A1/A2))0%2 & 21#22222)
PO 8 M=1,NMAX
DO 8 N = 1,NMAX
PO1 = (EP~ (1le+(A1/A2))REN(N))®#2,75
PR2 = (EP- (le+(A1/A2))%REN(M))2R,75
8 PSI(NsM)=CPSI#PP1#PP2A#MATRIX (N M)
IF(OUPST110+s11,10
10 WRITF (64204}
204 FORMAT(11HNPSI MATRIX)
NO 12 N = 14NMAX
12 WRITE(6+207) Ns(PST(NsM) M=1,NMAX )
11 CONTINUE
IF(SWITCH)AL64,441 4,466
441 WRITE(64442)
442 FORMAT(84HOPERFORMANCE CONTROLS NWAX, INTERV, NCM, EMMAX »
1 XIMAX, ACCUR, NTIME)
WRITE(69842) NMAX,INTERVINCMsEMMAX 3 X IMAX s ACCUR yNT IME
463 FORMAT(1HO,19Xs1692X9218+2F942+F13,7,17)
- EMCCK=EMMAX~SPIN({1)+0.,001
WRITE(6+444)
444 FORMAT(49HOOUTPUT CONTROLS OUXIs OUPSIs OUAMP, OUPROW)
WRITF(6+445) OUXIsOUPSI »OUAMP,OUPROW
445 FORMAT(1HO,17x317,18)

RANGE AND STEP WIDTH OF THE INTEGRATION

WRITE(64781) THETA
781 FORMAT(SSHOCM SCATTERING ANGLE USED FOR INTEGRATION 1S TCMDG(NCM)
13H = F7.,298H DEGREES)
446 TRAD=THETA/57.,295779
STR = SIN(TRAD/2.0)
EPS = 1,0/%TR
UP=ALOG(140/(EPS#SQRT (ACCURI})
COTY = COS(TRAD/2.0)*EPS
COT2 = COT1#COT1
ACC10=ACCUR /10,0
DW=40.0%# (ACCUR®#0,2)/({10s0+4B.0%XIM+16.0%#XIMREPS)
IF{(5.0%#DW)eGToUP) DW=0oe4%*#UP
I1STEP=UP /DW
IF(SWITCH)980,981,980
981 WRITE(64202)EPS,UP,ISTEP
202 FORMAT(THOFPS = F7e3s/
128HORANGE OF INTEGRATION, UP = F6,2 /
236HOFSTIMATED NUMRFR OF STEPS, ISTFP = 14)

980 N2W = NDW + NW
IF(SWITCHI984,983,984

982 WRITE(6,251)D2W

251 FORMAT(2THOINITIAL STEP WIDTH, D2W = F8,5)

CATALOGUE OF MAGNETIC SUBSTATES

986 1S = 1
NO 18 N= 1,NMAX
QUAN = SPIN(N)
TF (QUAN oGT o EMMAX)QUAN = EMMAX
. MSTOP = 2,0%QUAN + 1.0
OUAN = ~OUAN
PO 15 T = 14MSTOP
CAT(IS,1) = N
CAT(1S,2)= SPININ)
CAT(IS,3) = QUAN
OUAN = OUAN +1,0
1S = IS + 1
15 CONTINUE
18 CONTINUE
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ISMAX = IS -1
IF({SWITCH) 254,986,254
WRITE(64+250) ISMAX

FORMAT (45HOTOTAL NUMBER OF MAGNETIC SUBSTATES,

IF{ISMAX-90)254+2564,252
WRITE(6+253)

FORMAT (2440 ERROR ISMAX EXCEEDS 90)
GO T0 500

CONTINUF

COMPUTATION OF ZETA MATRIX

AA2 =2,0

PO 29 1S = 1,ISMAX

TEX = CAT(1S+2)~CAT(1S,3) + 0,0001
PHZ = (-1.,0)%#*1EX

Jp CAT(ISs1) + 06001

B1 -CAT(1S54+3)

AAl = CATI1S.2)

DO 20 IR = 1,1SMAX

B2 = CAT(1Ss3)=CAT(1IR,3)
TIF(ABS(B2)4eGT<2.001)G0 TO 815
A3 = CAT(IR,2)

B3 = CAT(IR,3)

IP = CAT(IR,1) + 0.001

ZFTA{IRIS)=PHZ#PST (1P ,JP)#2,23606R#THRFEJ(AA1,R1,AA2,B2,A3,B3)

GO TO 20
7FTA{IR+1S)=0.0
CONTINUF
CONTINUE

INTEGRATION OF THE DIFFERENTIAL EQUATIONS STARTS HFRE

INITIAL CONDITIONS FOR INTEGRATION

ISTFPS=0

ISTEPS COUNTS ACTUAL NUMBER OF STEPS
KAST=0

LMAX = SPIN(1) + 1.001

12ZMAX = TSMAX+ISMAX

W = =Up
DO 80 L = 1sLMAX

DO 81 IZR = 1,1ZMAX
AMP(12R,L)=1,0 E-30
IF{LeEQeIZRIAMP (TZRsL ) =140
CONTINUE

CONT INUE

INTEGRATION ROUTINE

CONSTANTS USED IN RUNGE-KUTTA EQUATIONS
RB1=0,5857864
C1=0.12132064
RR2=2,4142136
€2=-44,1213204

HEADING FOR PROW (VARTABLE FORMAT}
IF {OUPROWLFQs0) GO TO 399

FMT (3)=XNUM(NMAX)
WRITF(6sFMT )} (NsN=1NMAX)

P{11=1.00

PTOT=1.00

NO 70 N=24NMAX

P{N)=0.,00

FTL(4)=XNUM(TJ)

WRITE(6,FT1) WelP(N)sN=1sNMAX)PTOT

THE RUNGE-KUTTA-GILL INTEGRATION PROCEDURE

ISMAX = 13)
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399 CONTINUE
CALL OQIWsEPS»XIMAX X1 NMAX4QU)
CALL AMPDER(CAT»ZFTA,AMP ,QUsLMAX s ISMAX s AMPDOT )
NO 400 L = 1,LMAX
NO 400 TZR = 1,17MAX

400 FIIZRsLos1) = AMPDOT(IZR,L)
NO 401 NAM = 2,4
PO 90 L = 1,LMAX
PO 91 1ZR = 1, 1ZmAX
OI(IZReL) = DWRAMPDOT({IZRL)
AMP(TZR sl )=AMP( IZRoL}+Q1( IZRWL )}

91 CONTINUE

90 CONTINUF
W =W+ DW
CALL O(WsEPSsXIMAX X1 4NMAX 4QU)
CALL AMPNDER{CAT sZETA,AMP,QU L MAX s ISMAX s AMPDOT)
NN 98 L = T ,LMAX
NO 97 I7R = 1,1ZMAX
RX1 = DWH®AMPDOTIIZR L}
AMP({TZRsL) = AMP(IZR,L) + RBI®#(RK1l - R1(IZReLY
QLtIZRsL) = RBI#RK1 + C1l#01(I2R,sL)

97 CONTINUE

96 CONTINUE
CALL AMPDER(CATsZETA,AMP yQUsLMAX s ISMAX 4 AMPDOT)
PO 98 L = 1,LMAX
DO 99 IZR = 1,1ZMAX
RK2 = DW*AMPDOT (IZR,L)
AMP(TZRsL) = AMP({IZR4L) + RB2®(RK2 - O1(IZR,L))
Ql{IZRsL) = RB2#RK2 + C2%01(IZ2R,L)

99 CONTINUF

98 CONTINUE
W =W + DW
CALL Q(WsEPSsXIMAX X1 ,NMAXQU)
CALL AMPDER(CAT sZETALAMP ,QUsLMAX s ISMAX»AMPDOT}
DO 110 L = 1,LMAX
PN 111 17R = 1, 1ZMAX
RK3 = DWRAMPDOT{IZR,L)}
AMP(IZR,L) = AMP(IZR,L) + RK3/3.0 =~ 2,0%Q1(12ZRsL}/3.0

111 CONTINUE

110 CONTINUE
CALL AMPDER({CAT s2FTALAMP 4QUsLMAX » 1SMAX » AMPDOT)
DO 402 L = 1,LMAX
DO 402 1ZR = 1,1ZMAX

402 F(IZRsL4NAM) = AMPDOT(IZR,L)
ISTEPS=TISTFPS+1
KAST=KAST+1

401 CONTINUE
WE NOW HAVE THE & STARTING VALUES OF THE DERIVATIVES AND CAN
PROCEFD BY THE ADPAMS-MOULTON METHOD

THE ADAMS-MOULTON ROUTINE

95 CONTINUF
PO 403 L = 1,LMAX
DO 403 IZR = 1,I1ZMAX
AMPP (1ZRsL) = AMP{IZRsL) + DW/12s #(55.#F(1ZRsL+4)
1-59.#F(1ZRoL 93) + 3T+#F(IZRyLs2) — 9e#F(IZRsLs1) )
403 CONTINUE
W =W+ DW + DW
KAST = KAST + 1
ISTEPS=ISTEPS+1
CALL O(WSsEPSsXIMAXsXTyNMAXQU)
CALL AMPNER({CAT +ZFTA,AMPP ;0UsLMAX s 1SMAX,AMPDOT)
NO 404 L = 1.LMAX
D0 404 IZR = 1,1ZMAX
AMP{IZR,L) = AMP(IZR,L) + DW/12« #* (9.%AMPDOT(IZRsL)
1+ 19.0%F{IZRsLs84) — Se#F{IZRsLs3) + F(IZRsL,2))

404 CONTINUE

132
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CALL AMPDER(CAT sZFTAJAMP QU LMAX s ISMAX s AMPDOT)
DO 405 L = 1,LMAX

NO 405 1ZR 1,12ZMAX

FITZRsL»1) FIIZRsL o2}

FITZRsL »2) F{I2RsL 3}

F(TZR 4L +3) FLIZRsL s4)

FITZR L 48) AMPDOTI(IZRL)

CONTINUE

TF(WeGTeUP) GO TO 571

ACCURACY CONTROL

FF=0e0

FIND LARGEST AMPP - AMP

NO 573 L=1,LMAX

PO 574 TR=1,1SMAX

IMAG = TR + [SMAX

FZR = AMPP(IR,L) - AMP(IR,L) +140 E=30
F21=AMPP ( IMAG,L 1 -AMP(IMAG,L) + 1,0 E-10
F2=(SORT(FZR®#FZR+FZI*#FZ1))/14,0
IF(F2=FF)574,574,21

FF=F2?

CONTINUF

CONTINUE

ACCOS0 = ACCUR/ 5060

IF(FF.LT.ACC050) GO TO 575
IF{FF.GT+ACCUR) GO TO 577
TF(KAST~-INTERV}95,571,571

PW=2 . 0%DW

N2W=DW+DW

WRITF(6+5T6) WeD2W

FORMAT(S8HOAT W = FT7e3,36Hy STEP WIDTH WAS DOUBLFED TO BE D2W =F8.5)
GO TO 399

DW=DW/2 .0

D2W=DW+NW

WRITE(6+578) WsD2W

FORMAT(BHOAT W = F7.3+36Hs STEP WIDTH WAS HALVED TO BE D2W = FB.5)
GO TO 399

THE EXCITATION PROBABILITIES DURING INTEGRATION
LLMAX = 2,0#(SPIN(1) + 1.001)

NO 52 IR = 1,1SMAX
IMAG = [R+]SMAX

‘PROB(IR)=0,0

L =1

DO 54 LL = 2+LLMAX,»2

LL IS INDEX COUNTER ONLY

IF{LL-LLMAX)50+,51,52

FAC = 2,0

GO TO 53

FAC = 1,0

CONTINUE

PROB( IR)=PROB(IR)+(FAC/{2+0%SPIN({1)41,0) 1 #{AMP(IR,L)#AMP {IR,L}+

1AMP { IMAGsL ) #AMP [ TMAG, L))

L=L+1

CONT INUF

CONTINUE

IR=1

DO 61 N = 1,NMAX

D{N) = 0.0

P(N) = D(N) + PRNB(IR)
IR = IR + 1
IF({IR.GTeISMAX) GO TO 62
ICAT = CAT(1IRs1) + L01
IF{ICAT-N} 60+60,61
CONT INUE

CONTINUE
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PTOT=0.0

NN 410 N = 1,NMAX
410 PTOT = PTOT + P(N)

IF(WeGT4UP) GO TO 93

PTOT CHECK
ABW = ABS({PTOT = 1.0)/720.0
IF(ABW.LT.ACCUR) GO TO 93
FT{10}=XNUM(1J)
WRITE(64FT) WsPTOT
GO TO 500
93 IF(OUPRNOW)B01,802,801
801 WRITE(6+FT1) We(P(N)ysN=14NMAX] PTOT
802 KAST=0
IF(N-UP)195,92+92
92 CONTINUF
WRITE(64+790) ISTEPS
790 FORMAT (34HNACTUAL NUMBER OF STEPS, ISTEPS = 14)

INTFGRATION COMPLETED

PRINT—OUT OF THE FINAL AMPLITUDES AMP(Ws+UP)
572 IF(OUAMP) 35041224350
350 DO 120 L=1,LMAX
WRITE(6+313) CAT(L+3)
313 FORMATI(I3HIINITIAL M = F4.) )
WRITE(6+314)
314 FORMAT(1HO,1X4HSPINSX12HMAG«QUANSNO«6X14HREAL AMPLITUDE7X
114HIMAG AMDPLITUDE/)
VAL = CAT(1,1)
PO 120 1ZR = 1, 1SMAX
IMAG = IZR + ISMAX
IF(CAT(IZR,1) - VAL) 842,842,840
840 VAL = CATI(IZR,1)
WRITE(64841)
841 FORMAT(1HO)
842 FT2(5)=XNUM(TIJ)
WRITE(6+FT2){CATIIZRILCIILC=2y3)sAMP(IZRsL) »AMP(IMAG,L)
120 CONTINUE
122 CONTINUE

COMPUTATION OF THE DIFFERENTIAL CROSS-SECTIONS

HEADING FOR CM CROSS SECTIONS

298 WRITE(6+4510)

510 FORMAT(1HO,12H LEVFL INDEX1OX1OHEXCITATION11Xx16HCM CROSS SECTION/
122x13HPROBABILITIESOX15HBARNS/STERADIAN//7X1HN18X4HP(N)18X
211HDSIG(MEN,N))

GO TO 297

297 CDS1IG1 = (1.0+A1/A2)
COSIG=SQRT(EP)I®#(CDSIGLI#Z1%22/EP)na2
DO 470 N = 1 ,NMAX
DSIG(MENIN)=e001296%CDSIGHSQRT(14/(FP-CNSIGI#EN(N} )
1#P(N)R(EPSHE4)

295 FT3{4) = XNUM{(TJ)

FT3(7) = XNUM(1J+1)
WRITE{6+FT2) NsPIN)+sDSTG(MENN)
SWITCH = SWITCH + 1.0

470 CONTINUE
1000 FP = EP - ESTEP

RETURN
FND

IBFTC BLKDTA DFCK
BLOCK DATA

COMMON /XX /NMAXoEN(10)3SPIN(10)sMATRIX(10+s10)sFMT4(6)4XNUM(10)

REAL FMT&4 9 XNUM
DATA FMT4(1)/33H(1HO,10Xy2HM= (12510X11/70(XNUM{T),1=1,10)

1)/71H1 +1H2 s 1H3,1HG s 1HS 3 1HE 9 1HT 4 1HB» 1H9,2H10/
FND
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$IBFTC MATF DFCK
SUBROUTINE MAT

READ IN AND PRINT OUT OF E2-MATRIX ELEMFNTS

aNalal

REAL MATRIX
COMMON /XX /NMAXsEN{10)9SPIN(10)sMATRIX(10+,10)4FMT4(6) 4XNUM(10)
DO 36 N=14NMAX
36 READ(S5451) (MATRIX(NyM) yM=1 4,NMAX)
1 FORMAT(6F1244)
WRITE(6+441)
441 FORMAT(53HOQUADRUPOLE MATRIX ELEMENTS IN BARNS, READ FROM DATA
15HCARDS)
FMT4(4) = XNUM(NMAX)
WRITE(64FMT4) (MeM=1 4,NMAX)
DO 2 N=1,NMAX
2 WRITE(64207) Ns(MATRIXIN,M) 4M=]1,NMAX)
207 FORMAT(4HON =12,10F124.4)
RETURN
FND
$IAFTC FACI10F DNFCK
FUNCTION FACIO(N)

FAC10 GFENERATES FACTORIAL(N)/10%#N FOR INTEGERS NelLT.79

[a¥aka!

IF(N)1,2,3
WRITF(6,8)
6 FORMAT{36HOERROR- FACTORIAL OF NEGATIVE NUMBER)
RETURN
? FAC10=1,0
RETURN
3 IF(NeGT.79) GO TO 5
FAC10=1,0
N=1,0
DO 4 K=1,yN
C K IS INDEX COUNTER ONLY
FAC10=FAC10%Q/10.0
0=0+1.,0
4 CONTINUF
RETURN
5 WRITE(6+7)
7 FORMAT(33HOERROR- FACTORIAL OF NUMBER,GT.79)
RFTURN
END
$IBFTC THREE DECK
FUNCTION THREEJ!(Al, Bl, A2s B2, A3, B13)

>}

c
C A FUNCTION FOR THREE J SYMBOLS WITH ARBITRARY ARGUMENTS
C
C ROTENBERG FETe ALe (145) PAGE 2 WITH (244) FROM PAGE 13
C INPUT IS THREE-J:JI.MI.J29M20J39M3) FLOATING POINT ARGUMENTS
C ROUTINE REQUIRES FACTORIAL FUNCTION ROUTINE
C
DIMENSION A(3), B(3)
A(1Yy = Al
A(2) = A2
A(3) = A3
DO 19 N=1,12

IF{A(NI+0.001) 20419519
20 WRITE(6+60)
60 FORMAT(2BHOERROR- NEGATIVE J IN THREEJ)
CALL EXIT
19 CONTINUE
21 LA1=A1+A2+A3+0.001
LA2=A1+A2+A3+0.6
IF(LA2-LALY 22,423,422
22 WRITE(6,61)
61 FORMATI3I9HOERROR- HALF INTEGER SUM OF J IN THREFJ)

CALL EXIT
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R{1) = 81

B(2) = B2

B(3) = B3
LB1=ARS(R1+B2+B83)+0.001
LB2=ABS(B1+B24B3)+0.6
IF(LB2-LB1)Y) 24416424
WRITE(6462)

FORMAT { 39HOFRROR- HALF INTEGER SUM OF M IN THREFJ)

CALL FXIT
NRA1=ABS(B1)-A1-100.001
NBA2=ABS(B1)-A1-100.6
IF(NBA2-NBA1) 30,40,30
IF(NBA1,GT.(-100)) GO TO 26
NBA1=ABS(B2)-A2-100.001
NBA2=ABS(B2)-A2-100.6
IF{NBA2~-NBA1) 30541,30
IF{NBA1,GT.(-100})) GO TO 26
NBA1=ABS(B31~-A3-100.001
NBA2=ABS(B31-A3-10046
IF(NBA2-NBA1)30+42,30
IF({NBA1,GT,(-100)} GO TO 26
GO TO &2

WRITE(6463)
FORMAT(3S5HOERROR- J-M HALF INTEGER IN THREE J}
CALL EXIT

WRITE(6464)
FORMAT(33HOERROR- M LARGER THAN J IN THREEJ)
CALL EXIT

IF(LBIY 142,41

1 = Al + A2 - A2 +0,001
IF{S1)1412,512

§2 = Al =AD + A3 40,001
1IF(S2)1,14,14

3 = A2 + A3 - Al1+0,001
TF(S311,415,15
N=ABS(A1-A2-B3)+0,001

PHZ = (-1e0)R%®N

M = S1

FS1=FACI10(M)

M= 82

FS2=FAC10(M)

M = S3

FS3=FAC10(M)
FD=FACIO(LAl+1)
DELTA=SORT{ (FS1#FS2%FS3)/(FD#10401)
X=140

PO 3 J = 1,43
M=A{J)+B(J)1+0.,001
FS=FAC10(M)

X=X#FS

M= A(J)=-B(J)+0,001
FSM=FACI10(M)

X = X#FSM

ROOT = SORT(X)

SUM = 0,0

AK = 040

NS1 = AK+A2-A1-R2 40,001
IF{NS1)544,4

M = DS

FPS1=FAC10(M)

NS2 = AK + Bl + A3 - A2 +0,001
IF(DS2154646

M = DS2

FDS2=FAC10(M)

DS3 = Al - Bl - AK +0.001
TIF(NS318s7,7

136
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M = DS3

FNS3=FACIN(M)

NS4 = A1 + A2 = A2 - AK+0,.001
IF{DNS4)8+9,9

.M = DS4

FNS4=FAC10 (M)

PS5 = A2 + B2 = AK +0,001

IF(DS5)8,10,10

M = DS5

FDS5=FAC10(M)

M = AK +04001

FAK=FAC10(M)

TOPe(~1,0) #8#M

DFNOM = FAK#FDS1# FDS2# FDS3#% FNS4® FNSS
SUM = SUM + (TOP/DENOM)

S AK = AK + 1.0
GO To 11

8 THREEJ=PHZ#*DELTA#ROOT#SUM
RETURN

1 THREEY = 0,0
RFTURN
END

$I1BFTC QR DFCK

-
c
c

30
35
34
36

SUBROUTINE Q(W+EPSeXIMAXeXTsNMAX,QU)
GENERATFS NU(NsMsNU) FOR A GIVEN W

COMMON COT1,CO0T2

REAL NOMW

DIMENSION xI1(10510)sQUI1051046)

FW = EXP({W)

COSHY= 0e5 # (EW+ 140/EW)

SINHY= Oe5#(EW-1.0/EW)

NW1 = EPS®#COSHY + 1.0

DWSQ = DW1#DNW]

DENW = DWSQ#DWSQ

NOMW = COSHY + EPS

PE1 = 0,75%#(20#NOMW¥NOMW - COT2#SINHY#SINHY)/DENW
PF2 = 1,83711730 # COT1 # SINHY* NOMW/DENW
PE3 = 0.91855865 % COT2 # SINHY#SINHY/DFNW
ALFA = EPS#SINHY+ W

DO 36 N = 1,NMAX

DO 34 M = 1,NMAX
IF(ABSIXI(NsM))eGE«XIMAX)GO TO 30
ALF=SALFA#XT (NyM)

S = SIN(ALF}

C= COS({ALF)

QUINsM,1) = PEL1#C
MI{NsM,2) = PF1#S
QU(NeM,3) = PE2#S
QUINsMy4) = -PE2#C
OU(NsMs5) = —-PE3#C
QU{NsMy6) = -PE3%S
GO TO 34

DO 35 1 = 1,46
QUINsM,sI) = 060
CONTINUE
CONTINUE

RETURN

FND

$IBFTC AMDER DFCK

aNakal

SUBROUTINF AMPDFR(CAT+ZETA2AMP QU s LMAX 4 ISMAXsAMPDOT)

A SUBROUTINE TO GENERATE THE AMPDOT ARRAY

COMMON/Y/ACC1O

DIMENSION CAT(90,3)+sZETA{90+90)yAMPDOT(180+414+AMP(180+4}

DIMENSION QU(10,10,6)
DO 43 IR = 1sISMAX
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N = CAT(IR,1) + 0,001

IMAG=IR+ISMAX

PO 45 | = 14LMAX

AMPNOT(IR,L 12040

AMPDOT{IMAG,L)=0,0

CONTINUE

PO 42 1S = 1,I1SMAX

M = CAT(IS,1) + 0,001

TARG = TS+TSMAX

MU = ABSICAT(IRs3) = CAT{IS,s3)) + 0,001

IF({MU«GTe2) GO TO 42

7 = ZETA(IRLIS)

IF(ABS({Z)sLEsACCI0) GO TO 42

NU = MU+MU4+2

R1 = Z®NUI{NMeNU)

NU = MU+MU+1

R2 = Z#QUIN,MeNU)

DO 41 L = 1,LMAX

AMPDOT(IRsL )= AMPDOT(IRsL)~RI#AMP{1S,L)=R2%AMP (TARG,L)
AMPDOT{IMAGsL)= AMPDOT{IMAG,L)-RI®AMP (IARGsL)+R2#AMP(IS,L)

45

41 CONTINUE
42 CONTINUE
43 CONTINUF
RETURN
END
SNATA
703 10 165,00 164,0 Sef) 7
8,00 16,00 7640 188,00
029317 0400356 0.0
57¢10 57e15 57635 57¢40 57¢55 57e55 57,65
10 10 2 0,001
2.00 0.0 7
0 0 0 1
8,00 1600 7640 188,00
0.0 0.0
06155 240
0.478 4,0
04633 200
04950 60
0e961 4,0
1,086 060
0.0 -1¢675 0.0 04495 040
0.0
-14675 167160 =2670 009300 0.0
06175
0.0 =24670 241440 0,0 =24240
0.0
04495 09300 0.0 =-1,7160 0.0
0.0
0.0 0.0 ~20240 0,0 245920
0.0
00 0320 1.21 =-2.,120 0.0
0.0
060 06175 060 -0,0n0 0.0

0.0
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0.0
04320
1.21
-2.120
0.0
048440

0.000
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