Investigating the Path-Length Dependence of Jet Energy Loss in the Quark-Gluon Plasma

- Austin Rosypal -
The STAR Experiment

Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL)

Solenoidal Tracker at RHIC (STAR)
A Typical Collision
For the STAR 2019 Au-Au data used in this analysis, COM energy is $\sqrt{s_{NN}} = 200 \text{ GeV}$.
A Typical Collision
Quark-Gluon Plasma

Past a critical temperature $T_C \sim 155 \text{ MeV}$ (2 trillion °C), confined hadronic matter transitions to a soup of quasi-free colored partons.

This plasma, forming only 1 fm/c after the collision, can be modeled as a strongly coupled, relativistic hydrodynamic fluid.

Hard probes, spurred by the initial collision, traverse the entire medium, acting as excellent energy loss proxies.
Mid-Central Collision with some Impact Parameter vector \vec{b}

Quantum Uncertainty

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$
The quark-gluon plasma produced expands \textit{anisotropically}.
Path Length Dependence

More quark-gluon plasma = More potential color interaction sites

Particles travelling out-of-plane through the QGP will lose MORE energy than those traversing in-plane

Studying yields and energies of particle sprays in relation to the anisotropy of the QGP will probe the path length dependence theory
STAR TPC & EPD

Time Projection Chamber

 Measures the 4-momentum of charged particles
 Used to produce the jet & track p_T spectra

Event Plane Detector

 Detects the azimuthal distribution of emitted particles
 West EPD: Used to calculate q_2
 East EPD: Used to calculate the event plane

July 26, 2024

Austin J. Rosypal
Jets

Jets are highly energetic, collimated sprays of particles that are a result of the fragmentation and subsequent hadronization of quarks and gluons.

Transverse Momentum: \(p_T = \sqrt{p_X^2 + p_Y^2} \)

Jet \(p_T \) as a Function of Event Centrality

Counts

R=0.4 Jets
Anti-\(k_T \) Algorithm
Event Shape Engineering

Method that grants the ability to select on the characteristic shape of an event in given centrality and eccentricity bins
2nd Order Reduced Harmonic Flow Vector

\[q_2 = \frac{1}{\sqrt{M}} \left| \sum_{i=1}^{M} \cos(2\varphi_i), \sum_{i=1}^{M} \sin(2\varphi_i) \right| = \frac{1}{\sqrt{M}} \left| \sum_{i=1}^{M} e^{2i\varphi_i} \right| \]

- \(M \): Particle multiplicity of the event
- \(\varphi_i \): Azimuthal angle of \(i^{th} \) particle

Quantifies \textit{ellipticity} of the event (and of the QGP produced)

- High \(q_2 \) = Large Ellipticity
- Low \(q_2 \) = Radial Symmetry
There exist a range of probable q_2 values per centrality class, despite the monotonic decrease in average ellipticity.

q_2 Dependence on Collision Centrality

Central collisions are spherically symmetric
Peripheral collisions can attain high anisotropy in momentum space
Jet Yield with Respect to the Event Plane

\[\Delta \varphi = 30^\circ \]

- In-Plane
- Out-of-Plane

Event Plane Angle \(\Psi_2 \)
Jet Yield with Respect to the Event Plane

Initial indication of a dominance of in-plane jets per event

20-60% Centrality Jets with $p_T > 5$ GeV

Number of Jets in Event

N_{events}
Jet Yield Ratios

A ratio less than unity signifies a suppression of out-of-plane jet yields, due to the larger amount of QGP traversed with respect to in-plane jets.
Comparison to Computational Simulation

Computational work of Ryan Hamilton

Au-Au Data Event Shape Engineering Results

Eccentricity from: Geometric Grid

q^2 Distributions of Different Centralities
Comparison to Computational Simulation

Glauber Model results from Ryan Hamilton

Au-Au Data Event Shape Engineering Results

Event q_2 as a Function of Collision Centrality
Charged Track Spectra Ratio

Ratio of charged track spectra from the 10% highest and lowest q_2 events is compatible with unity.

Working towards replicating this relationship with jets: Would indicate a full reconstruction insensitivity to the underlying radial event.
The State & Future of Jet ESE...

Current Status

- Track spectra align, within error, to Isaac Mooney’s 2023 Au-Au charged hadron ESE analysis
- Centrality & shape correlations align with models
- Ratios indicative of pathlength dependence are in the right ballpark, though limited by low statistics and bounded by uncertainty

Coming Weeks

- Ensure that jet statistics are comparable to recent analyses
- Boost statistics to increase measurement uncertainties
- Implement statistical uncertainties
- Compare with further theoretical and simulation expectations
Acknowledgements

<table>
<thead>
<tr>
<th>Helen Caines</th>
<th>Showing me how to think through an analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isaac Mooney</td>
<td>For Providing Constant Sanity Checks</td>
</tr>
<tr>
<td>Ryan Hamilton</td>
<td>Phenomenological & Computational Verification</td>
</tr>
<tr>
<td>Andrew Tamis</td>
<td>Debugging Prowess</td>
</tr>
<tr>
<td>Youqi Song</td>
<td>Provider of Resources</td>
</tr>
<tr>
<td>The RHIG Undergrads</td>
<td>Countless Summer Memories</td>
</tr>
<tr>
<td>Morgan Knuesel</td>
<td>Dividing Histograms</td>
</tr>
<tr>
<td>Prakhar Garg & Fernando Flor</td>
<td>Bringing Humor to the Lab</td>
</tr>
<tr>
<td>Sierra Cantway</td>
<td>Driving the Undergrads</td>
</tr>
<tr>
<td>WL Custodians</td>
<td>Saving our Office from Flooding & Caving in</td>
</tr>
</tbody>
</table>

July 26, 2024