Energy Correlators for Jet Analysis

Richard Lin

Relativistic Heavy Ion Group (RHIG)

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int_{0}^{\infty} dt \ r^2 n^i T_{0i}(t, r\vec{n}), \qquad (1)$$

(Komiske, Moult, Thaler, Zhu, 2023)

$$\operatorname{ENC}(R_L) = \left(\prod_{k=1}^{N} \int d\Omega_{\vec{n}_k}\right) \delta(R_L - \Delta \hat{R}_L) \qquad (2)$$

$$\cdot \frac{1}{(E_{\text{iet}})^N} \left\langle \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \dots \mathcal{E}(\vec{n}_N) \right\rangle,$$

$$ENC(R_L) = \sum_{i_L=i_L}^{i_N} \int dR_L rac{p_T^{i_1}, p_T^{i_2} \dots p_T^{i_N}}{p_{T,jet}^N} \delta(R_L - \Delta \hat{R_L})$$

N=2 and N=3:

(Komiske, Moult, Thaler, Zhu, 2023)

Looking ahead:

- another way to probe α_{c}
- in the regions where perturbative theory is reliable:

$$\frac{E3C(R_L)}{EEC(R_L)} \sim \alpha_s + \mathcal{O}(\alpha_s^2) + \dots$$

• a new way to measure a fundamental constant from jet observables

IRC safety

1. Collinear and infrared (soft gluon) emissions are physically unresolvable

$$N \equiv$$
 number of jet constituents

$$z_{leading} \equiv rac{p_{T,\, leading}}{\sum_{i \in jet} p_{T,i}}$$

Image Credits: Luizoni and Marzani, 2015.

The pest of dimensionality

1. The standard n-point energy correlator function (ECF):

$$e_n^{(\beta)} = \sum_{i_1 < i_2 < \dots < i_n} \left(\prod_{a=1}^n p_{T,i_a} \right) \prod_{1 \le a < b \le n} R_{i_a i_b}^{\beta}$$

- 2. one dimensional only for the n=2 case. At n=3 need to compare three unique values for R -> 3-axes needed for visualization. At n=4, would need a 6 dimensional plot!
- 3. generated data also get sparser, which can complicate analysis: the curse of dimensionality

Jet Matching

- 1. A key complication in detector studies
- 2. A theorist's definition of jets involves perturbative QCD calculations including all particles
- Detectors measure the tracks of charged particles, but neutral particles can only be seen by calorimeters -> jets are constructed using charged particles
- 4. Also have to account for detector effects: hadronization, pileup, noise, etc.

Simulation pipeline

PYTHIA event generation

FastJet

Charged Jet (from charged particles)

Charged Jet reconstructed

Analysis: matching, correlators, ...

Jet Matching: an iterative process

Jet Matching: an iterative process Full Jet Charged Jet $\pi^{\,0}$ γ $\pi^{ ext{-}}$ K^{-} K^+ K^0 K^{-} K^0 K^{-} K^+ π^{0} K^{-} π^{-}

- 1. Cut first based on difference in jet axis (R<0.1)
- 2. Further cut based on minimum constituent pT fraction of charged jet compared to full (pTcharged/pTFull > 0.8)

Methods

Jet Matching: an iterative process

Jet Matching Statistics

Methods

Jet Matching: an iterative process

Results

Energy correlators from Pythia

$$\sqrt{s} = 13.0 \, TeV$$

$$R = 0.4, \, \eta_{jet} < 0.5$$

$$p_{T,track} > 1 \, GeV/c$$

Results

Energy correlators from Pythia

$$\sqrt{s} = 13.0 \, TeV$$

$$R = 0.4, \, \eta_{jet} < 0.5$$

$$p_{T,track} > 1 \, GeV/c$$

Results Energy correlators from Pythia

Discussion

Future directions

- n-point energy correlators (n>3)
- extracting $a_{\rm s}$ tuning jet matching
- beyond pp collisions