WL Summer Symposium Presentation

Darya Dayanim

Silicon Photomultipliers (SiPMs)

- Increased usage in physics experiments
- Pixels and their reset times

From Hamamatsu

Motivation: Saturation models only exist for short and uniform light pulses...

From Onsemi

- Characterize the non-linear response of SiPMs to non-uniform light
- Analytic equation for Gaussian profile
- Varying flux of photons

X

Simulation shows it should work

Optical Path

- Profile of beam show a roughly Gaussian beam with ~1mm radius
- Better raster scan with dimension of SiPM outlined in blue: 6.1x6.1mm
 - FWHM helps to find center

Parameters

Data Sheet: Pixel Size $(\Delta x, \Delta y)$, PDE, Gain, ECF

Measured Data: Beam Standard Deviation (σ), N_{photons}

Floating: Reset Time (Δt)

$$\langle R \rangle = \frac{2\pi\sigma_x\sigma_y}{\Delta x \Delta y \Delta t} \left[\gamma + \log \left(\frac{\text{PDE} \times N_{photons}}{2\pi\sigma_x\sigma_y/\Delta x \Delta y \Delta t} \right) - \text{Ei} \left(\frac{-\text{PDE} \times N_{photons}}{2\pi\sigma_x\sigma_y/\Delta x \Delta y \Delta t} \right) \right]$$

Summary

I measured the SiPM's saturation response to non-uniform light and it matched the model!

Next Steps

- Spatial filter for cleaner Gaussian
- Test with different voltages
- Write up the findings

Input

Beam

Figure 1.3 Clean Gaussian Beam

Gaussian

Beam

Questions?

Additional Resources

More about SiPMs - All Hamamatsu Images

(Recharge) Time Constant = R_QC_J

Fully recharged after about five time constants

I = <R> * gain * ECF

Motorized X/Y Stage SiPM X/Y Stage 90/10 PD 405 nm Spatial Laser Filter ND Filter

$$\langle N \rangle = \sum_{ijk}^{n_x n_y n_t} \left(1 - \exp\left(-PDE_{ij} \cdot U_{ijk}\right) \right)$$

$$\langle N \rangle = \int \frac{\mathrm{dx} \, \mathrm{dy} \, \mathrm{dt}}{\Delta x \Delta y \Delta t} \left(1 - \exp\left(-PDE \cdot \Phi(x, y, t) \Delta x \Delta y \Delta t\right) \right)$$

$$\downarrow$$

$$\langle R \rangle = \frac{2\pi \sigma_x \sigma_y}{\Delta x \Delta y} \left[\gamma + \log\left(\frac{PDE \times N_{photons}}{2\pi \sigma_x \sigma_y / \Delta x \Delta y}\right) - \operatorname{Ei}\left(\frac{-PDE \times N_{photons}}{2\pi \sigma_x \sigma_y / \Delta x \Delta y}\right) \right]$$

Motivation

- Silicon photomultipliers (SiPMs) are solid state photodetectors widely adopted in particle physics experiment
- Many detectors require large arrays of SiPMs
- High-throughput wafer-level testing typical for SiPM mass production
- High-throughput (IV) testing in tension with precision testing (pulse counting)
- Can we extract the same information from pulse counting measurements using IV?
- Resolving temporal and spatial saturation is the first step required for IV parameter extraction

