The ePIC Collaboration: Measuring the Effectiveness of the SiPM-on-Tile Hadron Calorimeter

Nathan Burns PI: Helen Caines Department of Physics

Quarks and Gluons

The Electron-Ion Collider (EIC)

The ePIC Detector

The Longitudinally Segmented Forward Hadronic Calorimeter (LFHCal)

Scintillating Tiles

The Silicon-Photomultiplier (SiPM)

However, test beam data from CERN seems to not be linear

- High gain is better for smaller signals like MIPs; larger amplifier and can see spread of data
- Low gain is better for individual large-energy signals;
 smaller amplifier and avoids saturation of these signals that would occur for high gain

Histogram of High and Low Gain

Cosmic Run Data (21 hours)

The LED Runs

The Slopes of LED Runs

Testing Multiple SiPMs

Running at Different Frequencies

- Same SiPM, ran at different frequencies generated by the waveform generator
- 3Hz, 6Hz, 9Hz, 12Hz
- This was similar to what was seen in the test beam data
- Conclusions and further tests are ongoing

Ensuring the Measurements of Scintillating Tiles

The Graphical User Interface (GUI)

Ensuring the Measurements of Scintillating Tiles

- 20 molded tiles to measure effectiveness
- Scanned tile dimensions were within ±0.10mm (100 microns) of the caliper-measured tiles
- Small offset, but confident enough to move on to machined tiles

- All tiles were cut by the same diamond ball drill, so based on the radius of the left behind dimple, we can determine thickness
- Tiles too thick won't fit within parameters and will have differing light yield

Conclusions

SiPM

- Tested and coded analysis of multiple different methods, including normal LED, Cosmics, Daisy-Chained, and Differing Frequencies in attempt to replicate worrying test data from CERN
- Not able to exactly replicate test beam data from CERN
- However, the Differing Frequencies method proved similar to test beam data, enough to warrant further testing

Tiles

- Modified and created new code for a pixel-to-mm conversion translational stage in a new setup to be able to scan 200 tiles fully automated
- Modified graphical user interface (GUI) to be more accommodating and have more detailed options
- Able to take accurate measurements (within 100 microns) of tiles
- Implemented a method of discerning a tiles thickness via their dimple

Acknowledgements

STARS Summer Program

Yale College Dean's Office

Wright Laboratory

Helen Caines Garg Prakhar Brookhaven National Laboratory

Oak Ridge National Laboratory

ePIC Collaboration

Appendix

Cosmic Run Data (21 hours)

Pedestal Data

Actual Histograms of Multiple SiPMs

Actual Histograms of Multiple SiPMs

Full Graphs

